Axon elongation and branching

Neuronal polarity, axon elongation and axon branching

Milestones in neuronal development

- mitosis
- nucleokinesis
- polarization
- leading process
- neurite initiation
- migration
- axon guidance & branching
- dendritic arborization
Axon elongation and branching

Neuronal maturation

- stage 1: "spherical" neuron
- stage 2: neurons extend several neurites
- stage 3: one neurite accelerates its growth rate and matures to form the axon.
- stage 4: dendrites begin to elongate and branch
- stage 5: synaptogenesis

Leading process formation and axon elongation

Some radially migrating neurons leave an axon at the ventricular surface as they migrate.
Axon elongation and branching

Cytoskeletal dynamics during neuronal migration

for a neuron to migrate, it needs to:

- protrude leading process
- link MT (+) end to leading process
- link MT (-) end to centrosome
- move centrosome
- link MT (+) end to nucleus
- ‘slide’ MT
- slide actin to ‘push’ rear end of nucleus
- control MT polymerization / depolymerization
- ‘sense’ when & where to stop

Molecules involved in neuronal migration

- Dynein: (-) end directed motor protein
- APC: MT (+) end binding & stabilizing, also bind and is regulated by GSKβ
- GSKβ: regulatory kinase
- LIS1: Lissencephaly gene, “regulator/adapter”, interacts with multiple proteins including dynein, IQGAP & cdk5
- DCCK: Doublecortin, MT bundling protein
- IQGAP: cdc42 GAP (GTPase Activating Protein)
- PAR3 & PAR6: polarity genes that bind to and localize PKC

Molecules involved in neuronal migration are similar to those involved in neurite elongation

Two competing (?) views of cell migration

A

Actin polymerisation leads to extension of the leading edge

B

Exocytosis leads to extension of the leading edge
Signaling Pathways that determine neuronal polarity ultimately lead to changes in the actin and microtubule cytoskeleton.

PKA and PKG play important, reciprocal roles in axon/dendrite formation, even in dissociated pyramidal neurons.

Shelly et al. (2010) Science
A combination of extrinsic cues and the intrinsic polarization of the neuron interact as immature neurons are undergoing migration to determine the location and orientation of the axon and apical dendrite.

Dendrites:
- High levels of soluble guanylyl cyclase (SGC, makes cGMP) = attraction to Sema3a

Axon:
- Low SGC, repulsed by Sema3A

Lis1 is involved in multiple stages of neuronal migration and axon elongation

Tsai et al. (2005) JCB 170(7):931-945
Ena/VASP proteins are required for neurite initiation, but not leading process formation or neuronal migration per se. Nonetheless, they regulate neuronal positioning.

Kwiatkowski et al. (2007). Neuron, 56(3), 441–455

Neuronal polarization:

What determines which neurite becomes the axon?
Some studies have shown that the axon is most likely to be formed by the first-formed neurite, followed next most frequently by the neurite at the opposite side, which is the second-formed neurite. This bipolarity may be due to the intrinsic orientation of the centrosome and Golgi apparatus, and their influence on transport of materials into neurites.

Several extrinsic manipulations of cultured hippocampal neurons can determine axonal identity. These manipulations include pulling on a stage 2 neurite, patterning the substrate with natural molecules or releasing molecules in a gradient.

Does centrosome localization determine neuronal polarity?

‘protrusions’ (*) initiate adjacent to the centrosome

dE18 rat hippocampus, coronal section

Data indicate that centrosome position may determine where the axon forms. But...

Centrosome position may actually determine which process is currently elongating the most

In the cortex, the centrosome is positioned on the pial side of the nucleus during radial migration, while the axon forms on the ventricular side of the nucleus.

During radial migration of granule cells in the cerebellum, the leading process becomes the dendrite.
Axon elongation and branching

Re-orientation of the centrosome/Golgi in cerebellar granule cells

What drives growth cone motility and axon elongation?
The leading margin of the growth cone undergoes continuous protrusion and withdrawal of filopodia and veils. This involves dynamic reorganization of the actin filament and microtubule networks.
Coordinating actin and microtubule dynamics in neurite initiation and elongation

Axon elongation and branching

Neurite elongation is a 3 step process

PROTRUSION
Actin polymerization drives membrane expansion forward

ENGORGEMENT
Microtubules advance via transport and polymerization. Organelles move forward.

CONSOLIDATION
Cortical tension draws the neurite shaft forward.

- Inhibit MT polymerization or transport, axonal elongation stops/retracts.
- Inhibit actin polymerization or myosin tension, axonal elongation continues but is slower and disordered.
Axon elongation and branching

Axon elongation & branch formation

Microtubule density before and during axonal branch formation

Axon elongation and branching

Cytoskeletal dynamics during axon branching

Signalling during axon branching
Axon elongation and branching

Netrin-1 induces axonal branching
...what types of cytoskeleton regulation might be involved?

Correlation between pausing and branching

in vivo growth cones appear to:
• pause: retrograde flow = anterograde protrusive
• enlarge (increased MT based transport by (+) end motors)
• exhibit dynamic protrusion/retraction
• leave ‘something’ behind
• branch formation occurs sometime later

Halloran or Kalil (1994)
Neuronal polarity, axon elongation and axon branching

- Determination of neuronal polarity involves the mitosis, neuronal migration and neurite initiation
- These processes cannot necessarily be divided into discrete stages
- Axon branching recapitulates many aspects of neurite initiation and may be triggered by both trophic and guidance factors
- Both cell intrinsic and extrinsic factors are involved