

Neuronal maturation

- stage 1: "spherical" neuron
- stage 2: neurons extend several neurites
- stage 3: one neurite accelerates its growth rate and matures to form the axon.
- stage 4: dendrites begin to elongate and branch
- stage 5: synaptogenesis

Why is diversity of dendritic arbors important?

- Dendritic arbor must cover its "territory" in order to detect the relevant signals
- Branch pattern and density must be suitable for sampling and processing the signals in the dendritic field
- Dendritic field must have both developmental and mature plasticity in order to respond to changes in the environment.

• Subtle differences at dendritic branch points could drastically alter the ability of synaptic input to generate, propagate, and time action potentials (Ferrante et al. 2013)

Dendritic arbors are highly diverse

Gao, F. B. (2007). Current Opinion in Neurobiology.

Generally properties of dendritic arbors

• self-avoidance (branches from the same neuron rarely overlap)

• tiling (avoidance of other neurons of same type) "like-repels-like"

•co-existence with neurons of different types

Jan, Y.-N., & Jan, L. Y. (2010). Nature Reviews Neuroscience, 11(5), 316-328

Basic properties of dendritic arbors are preserved in dissociated cultures, ...

...including self-avoidance and tiling

suggests cell intrinsic and extrinsic properties at work

Microtubule polarity may be different in in/vertebrates

• Microtubule polarity has implications for transport and sorting

Growing Dendrites and Axons Differ in Their Reliance on the Secretory Pathway

• Mutation/knockdown of genes involved in ER to Golgi transport mediated by COPII vesicles reduces dendrite, but not axon growth

Ye at al. (2007) Cell 130, 717-729

$ER \rightarrow Golgi \rightarrow Plasma$ membrane trafficking

Figure 15-18 Essential Cell Biology 3/e (© Garland Science 2010)

Red = highest localization of GFP-GM130 Golgi protein in cultured hippocampal neuron

Horton et al. (2005) Neuron Vol. 48, 757-771

Golgi outposts accumulate at dendrite branch points

cultured hippocampal neuron

Horton et al. (2005) Neuron Vol. 48, 757-771

•

Disruption of Golgi outposts alters dendrite polarity and arborization

Golgi outposts contain gamma tubulin and act as sites of acentrosomal microtubule nucleation

•

Acentrosomal microtubule nucleation promotes distal dendrite branching and stability y-Tub23C RNAi/ y-Tub23C(A152) CP309⁽⁵⁾/ CP309⁽⁵⁾/

Ori-McKenney (2012) Neuron 76, 921-930,

Stable

Reelin and Dab1 regulate the distribution of Golgi into the apical dendrite

Matsuki, et al(2010) Cell.

Dendrite elongation depends on microtubule based transport

• Dynein mutant has shorter dendrites, but still has lots or branches • Could this be due to an energy deficit?

Cell density affects dendrite morphology

LD = 15,000-30,000 cells/cm2 MD = 50,00 cells/cm2 HD = 150,000 cells/cm2

@ High density (HD), neurons have fewer, less branched, but longer dendrites compared to low density (LD)

Patricia Salama-Cohen et al. Mol. Biol. Cell 2005;16:339-347

Notch signaling: cell-cell signaling proliferation, neurogenesis and beyond...

Louvi, & Artavanis-Tsakonas, (2006). Nature Reviews Neuroscience, 7(2), 93-102

Notch signaling:

notch \rightarrow NCID \rightarrow nucleus \rightarrow increase HES1/5 transcription (bHLH protein) \rightarrow decrease Ngn3 expression

Cell density affects dendrite morphology via Notch signalling to HES1/5

LD = 15,000 cells/cm2

MD = 50,00 cells/cm2 HD = 150,000 cells/cm2

- @ HD, neurons • have fewer, less branched but longer dendrites
- express more HESI/5
- suggest that cell density "regulates" HES expression

@ MD, inhibition of Notch signaling

- reduces HES1/5 expression
- neurons have more dendrites that are more branched make neurons look more like LD
- suggests that HD may increase notch signalling

Patricia Salama-Cohen et al. Mol. Biol. Cell 2005;16:339-347

Salama-Cohen, P. (2004). Mol Biol Cell, 16(1), 339-347 cultured hippocampal neuron

- decreases the number of primary dendrites • does not change the number of branches
- · increases the length of dendrites
- makes neurons more like HD

@ MD NGF:

The effect of NGF depends on neuronal density

- does not change the number of primary dendrites or branches
- increases the length of primary dendrites & branches • makes neurons more like HD

Salama-Cohen, et al. (2006).. Journal of Neurochemistry, 97(5), 1269-1278.)

NGF induction of HES1/5 expression is dependent on the p75 receptor

Patricia Salama-Cohen et al. Mol. Biol. Cell 2005;16:339-347

NGF treatment or high density reduce expression of neurogenin 3 (Ngn3)

Journal of Neurochemistry Volume 97, Issue 5, pages 1269-1278, 15 MAR 2006 DOI: 10.1111/j.1471-4159.2006.03783.x

The effect of NGF is blocked by overexpression of HES6

@ MD:

- NGF increases the length, but not the number of primary dendrites & branches (similar to HD)
- Overexpression of tHES6 increases the number of primary dendrites, but not the length (more like LD)
- Overexpression of HES6 blocks the effect of NGF on dendrite length
- Suggests that NGF and HES6 have <u>opposing</u> functions in dendritogenesis

Salama-Cohen, P. (2004). Mol Biol Cell, 16(1), 339-347 cultured hippocampal neuron

Salama-Cohen, et al. (2006).. Journal of Neurochemistry, 97(5), 1269-1278.)

Notch and NGF/p75NTR control the number of inhibitory synapses through Neurogenin 3

Journal of Neurochemistry Volume 97, Issue 5, pages 1269-1278, 15 MAR 2006 DOI: 10.1111/j.1471-4159.2006.03783.x

Notch signaling:

- Notch signaling,
 - increased at HD
 - reduces dendrite branching
 - increases primary length
 - increase # of inhibitory synapses
- NGF signaling 'mimics' notch signal
- Both Notch and NGF
- increase HES1/5
- decrease Ngn3
- Ngn3
- increases dendrite branches
- does not change length of primary dendrites
- decreases # of inhibitory synapses
- Ngn3 is a transcription factor...what is it regulating???

How is dendritic arborization regulated by cell density? Developmental homeostasis and excitability levels

- cell density = chance of cell-cell contact
- · cell-cell contact required for notch signaling
- Notch signalling induces HES1/5 (bHLH transcription factor) expression
- HES1/5 inhibits expression of Ngn3
- Alterations in branch patterns can affect the relative excitatory/inhibitory balance
- What is the relationship between the number and length of branches?
- Why would is an increase in the total "amount" of dendrite (i.e. more and/or longer) correlated with increased excitability?

• Would pharmacological alteration of NMDA or GABA-A receptors affect dendrite arborization. In what direction?

Growth of dendrites

- ${\scriptstyle \bullet}$ Compared to axon growth and branching, dendrite growth and branching is:
 - regulated by an overlapping, but distinct set of molecules
 - much more dependent on the secretory pathway
- Neuron types with polarized dendrites (e.g. pyramidal neurons) may be dependent on Golgi accumulation to develop polarity
- Golgi outposts may provide sites of acentrosomal microtubule nucleation that are especially important for distal branching
- Notch signaling provides cell-cell signaling that acts as a "density sensor"
 regulates dendrite elongation and branching
 - high notch signal \rightarrow cell has short highly branched dendrites
 - *in vitro* high NGF mimic the effects of notch, presumably because *in vivo* high NGF would only be achieved at high cell density