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SUMMARY

Neurons establish their unique morphology by elab-
orating multiple neurites that subsequently form
axons and dendrites. Neurite initiation entails sig-
nificant surface area expansion, necessitating addi-
tion to the plasma membrane. We report that regu-
lated membrane delivery coordinated with the actin
cytoskeleton is crucial for neuritogenesis and iden-
tify two independent pathways that use distinct
exocytic and cytoskeletal machinery to drive neurito-
genesis. One pathway uses Ena/VASP-regulated
actin dynamics coordinated with VAMP2-mediated
exocytosis and involves a novel role for Ena/VASP
in exocytosis. A second mechanism occurs in
the presence of laminin through integrin-dependent
activation of FAK and src and uses coordinated
activity of the Arp2/3 complex and VAMP7-mediated
exocytosis. We conclude that neuritogenesis can be
driven by two distinct pathways that differentially
coordinate cytoskeletal dynamics and exocytosis.
These regulated changes and coordination of cyto-
skeletal and exocytic machinery may be used in
other physiological contexts involving cell motility
and morphogenesis.

INTRODUCTION

During cortical development, neurons sprout multiple neurites,
growth cone-tipped processes that are the precursors of axons
and dendrites. In culture, cortical neurons progress through
several morphological stages (Dotti et al., 1988), starting with
the extension of F-actin-rich lamellipodia and filopodia (Dehmelt
et al., 20083). Within 24 hr, neurons elaborate multiple neurites,
a process that requires both F-actin and microtubule (MT)
dynamics. Cortical neurons from mice lacking all three members
of the Ena/VASP family of actin regulators fail to form axons
in vivo (Kwiatkowski et al., 2007) due to a block in neuritogenesis
(Dent et al., 2007; Kwiatkowski et al., 2007). Ena/VASP-deficient
neurons lack filopodia, which are essential for cortical neurito-
genesis (Dent et al., 2007; Lebrand et al., 2004). Filopodia induc-
tion by Ena/VASP-independent methods rescues neuritogenesis
(Dent et al., 2007). Despite the striking neuritogenesis defect in
the cortex of Ena/VASP null animals, neurons elsewhere in the
developing embryo, such as those the retina and dorsal root

ganglia, form neurites and axons (Dent et al., 2007; Kwiatkowski
et al.,, 2007), indicating that neuritogenesis can also occur
through Ena/VASP-independent mechanisms. Interestingly,
even Ena/VASP-deficient cortical neurons can form neurites
under the right conditions: a small fraction of Ena/VASP-defi-
cient cortical neurons migrate out of the cortex, reach the pial
membrane, and extend axons back into the cortex (Dent et al.,
2007). Therefore, the Ena/VASP-independent neuritogenesis
pathway appears to be triggered by non-cell-autonomous
environmental factors such as the extracellular matrix (ECM).

The locations in which Ena/VASP-deficient neurons form
neurites and axons contain the ECM component laminin (LN)
(Dent et al., 2007); the cortex, however, contains only small
amounts of LN. Since cortical neurons normally grow in an environ-
ment with little LN, they are usually cultured without LN. When
cultured on LN, Ena/VASP-deficient cortical neurons form neurites,
confirming that LN can trigger Ena/VASP-independent neuritogen-
esis. Attachment to LN is mediated by transmembrane receptors,
including the integrin family (Buck and Horwitz, 1987). Integrin-
ECM attachment activates signaling pathways that modulate
cellular processes including cytoskeletal dynamics (Geiger et al.,
2001). The mechanisms driving LN-dependent neuritogenesis,
including the role of integrin activation and signaling, are unknown.

Neuritogenesis results in a rapid and large increase in surface
area (Pfenninger, 2009) that requires rapid insertion of new
membrane and proteins into the plasma membrane. Regulated
delivery via exocytosis is required for other neuronal morpho-
genic events that involve increases in surface area (Futerman
and Banker, 1996; Lanzetti, 2007; Martinez-Arca et al., 2000;
Pfenninger, 2009; Tang, 2001; Tojima et al., 2007) though
a role for regulated exocytosis in neuritogenesis has not been
established. Exocytic vesicles move along the cytoskeleton
to the cell periphery (Schroer, 1992; Tsaneva-Atanasova et al.,
2009), where the exocyst complex tethers them to the
membrane (EauClaire and Guo, 2003; Murthy et al., 2003;
TerBush et al., 1996). Membrane fusion is mediated by a vesicle
(v-SNARE) complexing with target SNAREs (t-SNAREs) in the
destination membrane (Hong, 2005; Tang, 2001). Many SNARE
proteins are brain enriched (Malsam et al., 2008) and several
v-SNAREs have specific neuronal functions. vesicle-associated
membrane protein 2 (VAMP2; synaptobrevin) is implicated in
growth cone chemoattraction (Tojima et al., 2007) and synaptic
function (Schoch et al., 2001; Wang and Tang, 2006), but not
neurite elongation (Osen-Sand et al., 1996); VAMP7 [tetanus-
insensitive VAMP (TI-VAMP)] is implicated in neurite elongation
(Alberts et al., 2006; Martinez-Arca et al., 2000).

Here we focus on mechanisms underlying Ena/VASP- and LN-
dependent neurite initiation and discover they are two mutually
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exclusive pathways. We find neuritogenesis requires both actin
dynamics and exocytosis; however, the Ena/VASP- and LN-
dependent modes use distinct pairs of an actin regulatory protein
and a v-SNARE. On LN, integrin signaling triggers the con-
comitant switch in cytoskeletal and exocytic machinery driving
neuritogenesis. Therefore, the ECM exerts a context-dependent
influence over cell shape and behavior by inducing a coordinated
switch in the cytoskeletal and exocytic machinery used to initiate
neurite formation, a hallmark of nervous system development.

RESULTS

Integrin Activation Supports Ena/VASP-Independent
Neuritogenesis

Neuritogenesis and axon outgrowth are blocked in cortical
neurons genetically null for all three Ena/VASP proteins (Dent
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Figure 1. a38; and a,B; Integrins Mediate
LN-Dependent Neuritogenesis

(A) Conditions used to study Ena/VASP-depen-
dent and LN-dependent neuritogenesis and sche-
matic of neuronal morphologies.

(B) Representative images of E14.5 cortical
neurons cultured for 48 hr, expressing AP4Mito
(CON) or FP4Mito (e/v) (blue) plated on PDL or
LN. Neurons were stained for BllI-tubulin (green)
and phalloidin (red). B4-, @3-, and az-integrin func-
tion-blocking antibodies (Ab; 1:1000) decreased
neurite formation, while ag-integrin (1:1000) and
a-dystroglycan (a-dystro; 1:200) function-blocking
antibodies did not. Scale bar represents 10 um.
(C) Percentage of cells in each morphological
stage + SEM. n > 3 independent experiments/
treatment; n > 25 neurons/experiment.
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et al.,, 2007; Kwiatkowski et al., 2007).
Due to the complexity of obtaining triple
null embryos from timed pregnancies,
we used a well-established method to
inhibit Ena/VASP. This approach exploits
the highly specific interaction of the EVH1
domain of Ena/VASP with the ligand motif
DFPPPPXDE (FP4) attached to a mito-
chondrial targeting sequence (FP4Mito)
to deplete Ena/VASP from sites of
function and sequester Ena/VASP on
the mitochondrial surface, blocking func-
tion (Bear et al., 2000). This phenocopies
the defects observed in cells genetically
null for Ena/VASP, including fibroblasts,
neurons, and endothelial cells; a control
form of the construct (AP4Mito) has no
effect on Ena/VASP localization or phe-
notype (Bear et al., 2000, 2002; Dent
et al., 2007; Furman et al., 2007; Lebrand
et al., 2004). The strategy is also effective
in vivo in Drosophila (Gates et al., 2007).
To investigate LN-dependent (Ena/
VASP-independent) neuritogenesis, we
plated FP4Mito-expressing [Ena/VASP
neutralized (“e/v”)] cortical neurons on LN. Ena/VASP-depen-
dent neuritogenesis was studied in AP4Mito expressing control
(CON) neurons plated on poly-p-lysine (PDL; Figure 1A).

We first identified the LN receptor required for Ena/VASP-
independent neurite initiation. Candidate receptors include
asBq, aePB1, and azBq integrins and a-dystroglycan (Flanagan
et al., 2006; Gorecki et al., 1994; Hynes, 2002; lvins et al.,
1998; Plantman et al., 2008). Due to the rapid kinetics of neurite
formation and the postmitotic state of neurons, siRNA was not
effective at depleting protein levels during neuritogenesis. There-
fore, we used function-blocking antibodies to LN receptors. After
48 hr, the morphology of neurons was classified (Figure 1A) as
lacking neurites (stage 1), having one or more neurites (stage 2),
or having one neurite/axon at least twice as long as any other
(stage 3). CON neurons formed neurites on both PDL and
LN (Figure 1), while e/v neurons failed to form neurites on PDL
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(p < 0.05; Figure 1), equivalent to null neurons (Dent et al., 2007).
As expected, this was rescued by LN (p < 0.05; Figure 1A).
A Bq-integrin function-blocking antibody inhibited neurite forma-
tion by e/v neurons on LN (p < 0.05; Figure 1), while a function-
blocking antibody against adystroglycan did not. Blocking either
B1-integrin or a-dystroglycan had no effect on neurite initiation
by CON neurons grown either on PDL or LN (see Figure S1A
available online), indicating that loss of Ena/VASP exposes a
requirement for integrin activation during neuritogenesis.

B1-Integrin dimerizes with a3, ag, and o7 integrins to form LN
receptors (Hynes, 2002). Function-blocking antibodies against
a3 and o integrins partially reduced neuritogenesis in e/v
neurons on LN (p < 0.05; Figure 1), while an ag-integrin func-
tion-blocking antibody did not. Using the a3- and a7-integrin anti-
bodies together phenocopied B1-integrin inhibition; addition of
the ag-integrin antibody did not reduce neuritogenesis further
(Figure 1), indicating LN-dependent neuritogenesis was medi-
ated by a3B1- and a,fB4-integrin heterodimers.

Unlike LN, fibronectin (FN) and collagen do not rescue cortical
neuritogenesis in the absence of Ena/VASP (Dent et al., 2007).
Western blots of cortical lysates indicated cortical neurons
expressed only trace amounts of a5 and o, integrins (data not
shown), which dimerize with B4 or B3 integrins to form FN recep-
tors (Hynes, 2002). Ectopic expression of as-integrin rescued
neuritogenesis in e/v neurons on FN (p < 0.05) (Figure S1) but
not on PDL; therefore, integrin-mediated neuritogenesis likely
results from a general integrin-signaling pathway that depends
on the integrin repertoire expressed by neurons and the local
ECM composition.

FAK, src, and Rac Function in LN-Dependent
Neuritogenesis

To identify signaling molecules regulating neuritogenesis, we
used pharmacological perturbations or dominant-negative
mutants (Figure 2). Surprisingly, inhibition of molecules impli-
cated in axon specification and guidance, such as phosphoino-
sitide 3 kinase (PI3K), phospholipase D, protein kinase A, and
protein kinase C (Han et al., 2007; Shen et al., 2002; Wolf
et al., 2008; Yoon et al., 2005), did not affect neuritogenesis in
e/v neurons on LN (Figures 2A and 2B) or CON neurons
(Figure S1). In contrast, inhibition of focal adhesion kinase
(FAK) by its noncatalytic domain, FRNK (Schaller et al., 1993),
or src with 50 nM PP2 (Ohnishi et al., 2001) decreased neurite
initiation in e/v neurons on LN (p < 0.05; Figures 2A and 2B),
but not in CON neurons on PDL (Figure S1A). Conversely, consti-
tutively active src (srcY527F) rescued neuritogenesis in e/v
neurons on PDL (p < 0.05; Figures 2A and 2B). Therefore, src
and FAK were necessary for LN-dependent neuritogenesis, but
dispensable for Ena/VASP-mediated neuritogenesis. In the
absence of Ena/VASP, activated src was sufficient to support
neuritogenesis and bypassed the requirement for LN.

Rho family GTPases are intermediates coordinating integrin
signaling and cytoskeletal dynamics. Rac and Cdc42 in partic-
ular regulate neuronal morphogenesis and membrane protrusion
(Brouns et al., 2001; Gallo et al., 2002; Miyashita et al., 2004;
Nobes and Hall, 1995; Pommereit and Wouters, 2007; Schaefer
etal., 2008). Expression of dominant-negative Cdc42N17 (Ridley
and Hall, 1992; Ridley et al., 1992) caused only a slight reduction
of neurite initiation in CON neurons on PDL (p < 0.05; Figures 2C

and 2D), but did not affect e/v neurons on LN. Constitutively
active Cdc42Q61L expression did not rescue neuritogenesis in
e/v neurons on PDL, although it induced filopodia formation
(Figures 2C and 2D); it is possible these filopodia were unable
to support neuritogenesis due to confounding secondary
effects.

RacN17 expression in CON neurons on PDL reduced neurite
formation slightly (p < 0.05; Figure 2). In contrast, RacN17
expression or treatment with a Rac inhibitor (NSC-23766; Gao
et al., 2004) reduced neuritogenesis substantially in e/v neurons
on LN (p < 0.05; Figures 2C and 2D). RacQ61L, however, failed to
rescue neuritogenesis in e/v neurons on PDL. These data
suggest Cdc42 and Rac play minor roles in Ena/VASP-depen-
dent neuritogenesis. In contrast, Rac activity was required
for LN-dependent neuritogenesis, although unlike activated
src, active Rac was insufficient for Ena/VASP-independent
neuritogenesis.

LN Switches the Actin Regulators Mediating
Neuritogenesis

We next asked whether other types of actin regulatory proteins
compensated for the absence of Ena/VASP in LN-mediated neu-
ritogenesis. Ena/VASP proteins promote F-actin polymerization
by protecting the fast growing ends of F-actin from capping
and can cluster the ends of actin filaments (Applewhite et al.,
2007; Bachmann et al., 1999; Barzik et al., 2005; Bear et al.,
2002; Breitsprecher et al., 2008; Schirenbeck et al., 2006) and
mediate filopodia formation (Dent et al., 2007; Gupton and
Gertler, 2007; Lebrand et al., 2004). Previously we found that
ectopic expression of Myosin X or mDia2, proteins that drive
Ena/VASP-independent filopodia formation, rescued neurito-
genesis in e/v neurons; however, neither is detectably expressed
in cortical neurons at this developmental stage (Dent et al.,
2007). The Arp2/3 complex can be activated downstream of
Rac, nucleates and branches F-actin, and has been implicated
in axon guidance and neuronal morphology (Korobova and
Svitkina, 2008; Strasser et al., 2004; Withee et al., 2004). We
used the CA domain of the Arp2/3 activator N-WASP to reduce
Arp2/3 activity during neuritogenesis. CA binds Arp2/3, blocks
its activation in vitro (Rohatgi et al., 1999), and attenuates its
activity in cells (May et al., 1999, 2000). CA expression in CON
neurons on PDL did not reduce neurite formation, although it
reduced the number of stage 3 neurons (Figure 3), indicating
that Arp2/3 may play a role in axon specification. However,
CA expression reduced neuritogenesis in e/v neurons on LN
(p < 0.05; Figure 3). Therefore, Arp2/3 is required for LN-depen-
dent but not Ena/VASP-dependent neurite initiation, revealing
a novel switch in the roles of actin regulators or a requirement
for specific types of F-actin supramolecular structures for
LN-dependent neuritogenesis.

An Exocytic Switch on LN

We next examined the regulation of membrane delivery during
the rapid increase in surface area that occurs during neuritogen-
esis (Pfenninger, 2009; Vega and Hsu, 2001); while exocytosis
is likely involved in this process, it is not clear which of the
v-SNAREs mediate vesicle fusion during neuritogenesis. The
v-SNARE VAMP2 functions in growth cone chemoattraction
(Tojima et al., 2007), but not neurite elongation (Osen-Sand
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Figure 2. FAK, Src, and Rac Activity Are Necessary for LN-Dependent Neuritogenesis
(A) E14.5 e/v cortical neurons cultured 48 hr expressing FP4Mito (blue) and either the FAK inhibitor (FRNK; green) or constitutively active Src (Y527F; green) or
treated with the indicated drugs, plated on PDL or LN. Neurons not expressing FRNK or SrcY527F were stained for Blll-tubulin (green) and phalloidin (red). Scale

bar represents 10 um.

(B) Quantification of morphologies, as in Figure 1. Targeted molecules include PI3K [50 uM LY294002 (LY)], protein kinase A (20 uM H-89), protein kinase C
[1 uM GF109230X (GF)], src (50 nM PP2), and phospholipase D [0.3% 1-butanol (1-b)]. n > 3 independent experiments/treatment; n > 25 neurons/experiment.

Scale bar represents 10 pm.

(C) E14.5 neurons cultured 48 hr, expressing AP4Mito (CON) or FP4Mito (e/v) (blue), plated on PDL or LN. Red indicates phalloidin and green indicates either
anti-myc (for Rac mutants), GFP (for Cdc42 mutants), or Blll-tubulin (in neurons not expressing a mutant).
(D) Quantification of morphologies + SEM. n > 3 independent experiments/treatment; n > 25 neurons/experiment.

et al., 1996). We used tetanus neurotoxin (TeNT) to cleave and
inhibit exocytosis mediated by VAMP1, VAMP2, and VAMP3
(Figure S2) (Sikorra et al., 2008; Verderio et al., 1999). Treatment
with TeNT blocked neuritogenesis in CON neurons on PDL (p <
0.05; Figure 4). This block was reversible (Figure S2) and, as
previously reported, TeNT treatment did not affect outgrowth
once neurites had formed (Figures S2E and S2F) (Osen-Sand
et al., 1996). VAMP2 is expressed highly in cortical neurons at
this stage (Figure S2), while closely related v-SNAREs VAMP1
and VAMP3 are not detectable (Schoch et al., 2001), suggesting
VAMP2-mediated exocytosis is essential for Ena/VASP-depen-
dent neuritogenesis.

Surprisingly, TeNT did not block neuritogenesis on LN, indi-
cating that attachment to LN also bypasses the necessity for
VAMP2 during neuritogenesis. This suggested LN triggered

neurons to use another v-SNARE. VAMP7 was a logical candi-
date: it is present in the cortex (Malsam et al., 2008) (Figure S2)
and is insensitive to TeNT (Galli et al., 1998). The N-terminal
fragment of VAMP7 blocks VAMP7 SNARE complex formation
(Martinez-Arca et al., 2000) and, as expected, its expression
reduced VAMP7-mediated, but not VAMP2-mediated, exocy-
tosis (Figure S2G). VAMP7 inhibition blocked neurite formation
in e/v neurons on LN (p < 0.05; Figure 4) but not CON neurons
on PDL (Figure S1A). Together these data indicate that exocy-
tosis is required for neuritogenesis and that LN induced a switch
in the key v-SNARE mediating exocytosis: VAMP2 was required
for Ena/VASP-dependent neuritogenesis; VAMP7 was neces-
sary for LN-dependent neuritogenesis.

Since VAMP2 inhibition phenocopied loss of Ena/VASP
activity, we wondered if the neuritogenesis defect in e/v neurons
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involved reduced exocytosis. Exo70 is a component of the
exocyst complex that when overexpressed drives filopodia
formation, membrane protrusion, vesicle tethering, and secre-
tion (Liu et al., 2009; Zuo et al., 2006). Exo70 overexpression
restored neuritogenesis (p < 0.05; Figure 4), as did VAMP7
(p < 0.05; Figure 4), whereas overexpression of VAMP2 or
VAMP3 failed to rescue neuritogenesis of e/v neurons (Figure 4).
These data indicate that the Ena/VASP-dependent defect in neu-
ritogenesis may result from reduced exocytosis. Coexpression
of the inhibitory VAMP7 NH, fragment impaired the ability of
exogenous Exo70 to drive neuritogenesis in e/v neurons (p <
0.05; Figure 4), indicating that Exo70 rescued neuritogenesis
through a mechanism partially dependent on VAMP7. Further-
more, in this system, VAMP7 function was necessary and suffi-
cient for Ena/VASP-independent neuritogenesis.

Vesicle Dynamics and Exocytosis Are Altered on LN
VAMP2 and VAMP?7 localize to distinct vesicle populations in
cortical neurons (Figure S3). Since the ECM can switch both
the v-SNAREs and F-actin regulators required for neuritogene-
sis, we hypothesized that the dynamics of v-SNARE-containing
vesicles would be sensitive to substrate as well. To characterize
vesicle dynamics, we performed live cell total internal reflection
fluorescence microscopy (TIR-FM; Axelrod et al., 1983) of GFP-
tagged v-SNAREs expressed at low levels (Figures 5A-5D),
which localize with endogenous proteins (Figure S3). In CON
neurons on PDL, VAMP2-containing vesicles dynamically
explored the cell periphery and filopodia, while on LN most vesi-
cles remained static in central regions. VAMP7-containing vesi-
cles exhibited inverse dynamics, visiting the periphery frequently
on LN (Movie S1). Quantification of velocity showed no change
on PDL or LN (Figure 5C). However, VAMP2-containing vesicles
moved more directionally on PDL than LN, while VAMP7-con-
taining vesicles were more directional on LN (t tests, p < 0.05;
Figure 5C). Dual spectral imaging of VAMP2 and VAMP7
confirmed these distinct dynamics (Figure 5D; Movie S2). There-
fore, directional vesicle movement occurs for a v-SNARE when it
is required for neurite initiation.

The observations described above led us to hypothesize that
Ena/VASP affects vesicle dynamics. Ena/VASP inhibition did
not affect the velocities of VAMP2- or VAMP7-containing vesicles
on PDL or LN. However, on PDL, Ena/VASP inhibition caused
VAMP2-containing vesicles to no longer pause at the periphery.
In contrast, VAMP7-containing vesicle dynamics appeared unaf-
fected by Ena/VASP inhibition (Movie S3), suggesting Ena/VASP
or associated F-actin may be important for dynamics or docking
of VAMP2- but not VAMP7-containing vesicles.

B 100l Figure 3. The Arp2/3 Complex Functions in
) 5 e LN-Dependent Neuritogenesis
§ 2 804 §’ (A) E14.5 neurons cultured 48 hr, expressing
g‘g 504 [ mCherry-CA (green) and either AP4Mito (CON) or
‘@ ; i FP4Mito (e/v) (blue), plated on PDL or LN. Phalloi-
@:é 40 :‘é, din staining is red. Scale bar represents 10 pm.
5 8 20 n (B) Quantification of morphologies + SEM. n > 3
2 % independent experiments/treatment; n > 25
O'PDL TN PDLPDCLNTLN 'é neurons/experiment.
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CON v @

VAMP2- and VAMP7-mediated exocytosis were measured in
stage 1 neurons using TIR-FM of pH-sensitive pHluorin-tagged
VAMP2 and VAMP7 (Alberts et al., 2006; Miesenbock et al.,
1998; Figures 5E and 5F; Movie S4). VAMP2-mediated exocy-
tosis occurred 3-fold more frequently in CON neurons on PDL
than on LN (p < 0.05). In contrast, VAMP7-mediated exocytosis
was more frequent on LN (p < 0.05; Figure 5F; Movie S5). The
high frequency of VAMP2- and VAMP7-mediated exocytosis
on PDL and LN, respectively, correlated with their increased
directionality and requirement in context-dependent neuritogen-
esis, indicating that attachment to LN switches the dynamics
and function of exocytic machinery.

Exocytic Fusion and the Cytoskeleton

Since the relationship between cytoskeletal dynamics and
exocytosis is complex (Becker and Hart, 1999; Sokac and
Bement, 2006; Valentijn et al., 2000) and exocytosis and cyto-
skeletal dynamics are crucial for neuritogenesis in cortical
neurons (Dehmelt et al., 2003; Dent et al., 2007), we hypothe-
sized that they were coordinated. To determine how dampening
of actin dynamics affects exocytosis, we treated CON neurons
with the F-actin capping drug cytochalasin D (CD) at a concentra-
tion that blocks filopodia and neurite formation, but does not
affect growth cone dynamics once neurites/axons have formed
(Dent and Kalil, 2001; Dent et al., 2007). Since VAMP2 is required
on PDL and VAMPY is required for LN-dependent neuritogene-
sis, we analyzed vesicle fusion on these respective substrates.
The frequencies of VAMP2- and VAMP7-mediated exocytosis
were significantly decreased by long-term and acute CD treat-
ment (p < 0.05) (Figure 6B and Figure S4), indicating that exocy-
tosis mediated by these v-SNAREs requires proper F-actin
dynamics.

To determine if MT dynamics function in exocytosis, we
treated CON neurons with nocodazole at a concentration that
dampens MT dynamics and blocks neuritogenesis but leaves
polymer levels intact (Dent et al., 2007). Neither VAMP2- nor
VAMP7-mediated fusion were significantly affected by long-
term treatment (Movie S6; Figure 6B); however, both were
slightly reduced by acute treatment (Movie S7 and Figure S4),
indicating a complex relationship between MT dynamics and
exocytosis exists.

The Cytoskeletal and Exocytic Switches
Are Coordinated and Mutually Exclusive
We hypothesized that Ena/VASP or Arp2/3 activity is required for
context-dependent (i.e., Ena/VASP versus LN) exocytosis. We
imaged VAMP2-phluorin and VAMP7-phluorin CON neurons
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Figure 4. VAMP2 and VAMP7 Are Required for Ena/VASP-Dependent and LN-Dependent, Ena/VASP-Independent Neuritogenesis,

Respectively

(A) Neurons expressing AP4Mito (CON) or FP4Mito (e/v) (blue) plated on PDL or LN and cultured 48 hr.

(B) Quantification of neuronal morphologies + SEM. n > 3 independent experiments/treatment; n > 25 neurons per experiment. 50 nM TeNT and expression of
the NH, domain of VAMP7 (NH,-V7) were used to block VAMP2- and VAMP7-mediated exocytosis, respectively. Overexpression of Exo70 or VAMP7 but not
VAMP2 nor VAMPS3 rescued neuritogenesis in e/v neurons on PDL. VAMP expression is green and phalloidin is red; neurons not expressing VAMP were stained

for Blll-tubulin (green). Scale bar represents 10 um.
(C) Summary of molecules implicated in Ena/VASP- or LN-dependent neuritogenesis.
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following Ena/VASP or Arp2/3 inhibition. VAMP2-mediated
exocytosis on PDL was attenuated significantly by Ena/VASP
but not Arp2/3 inhibition (p < 0.05) (Figure 6B; Movie S8). In
contrast, VAMP7-mediated fusion on LN was unaffected by
Ena/VASP inhibition, but reduced by CA expression. Therefore,
VAMP2- and VAMP7-mediated exocytosis requires Ena/VASP
and Arp2/3 activity, respectively, and/or the type of F-actin
structures formed by these two actin regulators. In addition,
the switches in cytoskeletal and exocytic machinery following
attachment to LN are coordinated.

mDia2 nucleates linear F-actin filaments, drives filopodia
formation (Copeland et al., 2004; Harris et al., 2006), and rescues
filopodia formation and neuritogenesis in the absence of Ena/
VASP (Dent et al., 2007). Expression of mDia2 in e/v neurons
also rescued the frequency of VAMP2-mediated vesicle fusion
(p < 0.05) (Figure 6B; Movie S8), suggesting that F-actin bundles
and/or filopodia, structures produced by either mDia2 or Ena/
VASP, are required for VAMP2-mediated exocytosis and that
mDia2 may support neurite initiation in e/v neurons by rescuing
VAMP2-mediated exocytosis.

VAMP7-Mediated Exocytosis Occurs Downstream

of LN-dependent Signaling

Our data suggest that (1) specific F-actin structures or remodel-
ing proteins may specify or facilitate the specific v-SNARE

Figure 5. VAMP2- and VAMP7-Containing
Vesicles Display Distinct Dynamics and
Fusion on PDL and LN

Frames from time lapse of E14.5 CON cortical
neurons expressing either GFP-VAMP2 (A) or
GFP-VAMP7 (B) plated on PDL or LN, imaged
6 hr after plating. Green tracks indicate vesicle
position over time.

(C) Quantification of vesicle speed and direction-
ality of vesicle movement + SEM. Directionality
was calculated by dividing the net distance trav-
eled by the total distance traveled by each vesicle;
a higher ratio indicates more directional vesicle
movement. n > 5 cells/condition and n > 30 vesi-
0 cles/cell imaged in >5 consecutive frames. Scale
bar represents 5 um.

(D) Frames from a time lapse of E14.5 CON
neurons expressing GFP-VAMP2 and mcherry-
VAMP7. Arrowhead indicates a VAMP2-containg
vesicle moving into a filopodia, while the arrow
indicates a VAMP7-containing vesicle remaining
stationary in a more central region.

(E and F) E14.5 CON neurons expressing VAMP2-
pHIluroin or VAMP7-pHIuorin were plated on PDL

= = = o
(] w IS 2

Net Distance/Total Distance

=
A

Directional
Movement

W VAMP2 PDL ! .
or LN. After 6 hr, vesicle fusion events on the basal
VAMP2 LN cell membrane were imaged by TIR-FM.
W VAMP7 PDL (E) Representative images from a time-lapse
demonstrate a vesicle fusion event. The fluores-
l VAMP7 LN cence intensity of pHIuorin is low when it is within

the vesicle lumen (t = 0 s). Upon fusion with the
plasma membrane, pHluorin is exposed to the
higher cytosolic pH, and there is a rapid increase
in fluorescence intensity (t = 0.8 s), followed by a
rapid diffusion of fluorescence as the molecules
disperse within the plasma membrane (t = 1.6-
2.4 s). The frequency of vesicle fusion + SEM is
shown in (F). n > 15 cells/ condition. Scale bar
represents 1 pm.

driving neuritogenesis and (2) activation of integrin-dependent
signaling pathways stimulates VAMP7-mediated vesicle fusion.
We hypothesized that VAMP7 overexpression might stimu-
late exocytosis and neuritogenesis independently of the sig-
naling pathway, as in e/v neurons on PDL, perhaps through
a mechanism similar to that of Exo70 overexpression. We
overexpressed VAMP7 in e/v neurons on LN when molecules
required for LN-dependent neurite initiation were inhibited
(Figures 7A and 7B). VAMP7 overexpression rescued neurito-
genesis blocked by inhibition of FAK, src, Rac, and Arp2/3
(t tests, p < 0.05), suggesting that VAMP7 functions in LN-
dependent neuritogenesis downstream of FAK, src, Rac, and
Arp2/3. However, VAMP7 was unable to rescue neuritogenesis
blocked by CD treatment (Figure S5), indicating that intact actin
dynamics mediated by Arp2/3 and likely another actin regulator
such as cofilin, DAAM1, or Cordon blue (Ahuja et al., 2007;
Aizawa et al., 2001; Chen et al., 2006; Matusek et al., 2008)
may be involved.

To assess directly whether VAMP7 functions downstream
of integrin signaling, we imaged exocytic events on LN
and found FAK or src inhibition (both of which block LN-
dependent neuritogenesis) decreased VAMP7-mediated exo-
cytosis (p < 0.05) (Figure 7C; Figure S4 and Movie S9), indi-
cating that they regulate VAMP7-mediated exocytosis in this
context.
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DISCUSSION

We have identified two mutually exclusive, parallel pathways that
mediate neuritogenesis. Both pathways require specific coordi-
nated sets of F-actin and exocytic machinery. We found that
exocytosis is required for neurite initiation and is mediated by a
specific pairing of v-SNARE and F-actin regulator. Cortical
neurons normally require the activities of Ena/VASP (Dent
et al.,, 2007) and VAMP2. Attachment to LN rendered Ena/
VASP and VAMP2 dispensable and revealed a requirement for
Arp2/3 and VAMP7 downstream of integrin, FAK, src, and Rac
(Figure 4). Interestingly, VAMP2-mediated exocytosis required
Ena/VASP while VAMP7-mediated exocytosis required Arp2/3.
This may indicate a preference of v-SNARE-containing vesicles
for specific F-actin structures—linear and/or bundled versus
branched F-actin. These changes occurred downstream of
integrin signaling, raising the possibility that similar conversion
mechanisms may be used for neurite initiation by other neuronal
types, for other steps in neuronal development, such as axon
outgrowth and chemoattraction, or in shape changes and
motility of non-neuronal cells.

An Unexpected Role for Ena/VASP in Exocytosis

Our data indicate that Ena/VASP proteins or associated F-actin
structures function in VAMP2-mediated exocytosis and that an
exocytosis defect contributed to a neuritogenesis block in e/v
neurons. Both Ena/VASP and VAMP2 inhibition blocked neurito-
genesis and e/v neurons had reduced VAMP2 exocytic fusion.
Neuritogenesis in e/v neurons was rescued by overexpression
of Exo70 or VAMP7, but not VAMP2, indicating that VAMP2
function requires Ena/VASP or the type of structures produced
by Ena/VASP. Introducing mDia2, which promotes F-actin poly-
merization and filopodia formation, rescued the frequency of
VAMP2-mediated exocytosis in e/v cells, correlating with the
ability of mDia2 to rescue e/v neuritogenesis (Dent et al., 2007).
Together these results lead us to propose that VAMP2-mediated
exocytosis requires F-actin structures typically formed by
Ena/VASP. Thus, a critical role of Ena/VASP in neuritogenesis
involves VAMP2-mediated exocytosis. In contrast to VAMP2,
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Figure 6. Cytoskeletal Dependence of
. VAMP-Mediated Vesicle Fusion
:%tggdhaa;g?én D (A) Control, CD, and nocodazole-treated E14.5
elv CON neurons stained with phalloidin (red) and
Blll-tubulin (green) 6 hr after plating. Scale bar
represents 5 pm.

(B) Frequency of vesicle fusion + SEM in E14.5
neurons expressing either VAMP2-pHluroin or
T VAMP7-pHluorin plated on PDL or LN, respec-
tively, as in Figure 5. VAMP2 and VAMP7 fusion
events were significantly reduced by CD treatment
(p < 0.05), but not nocodazole treatment, although
VAMP7 events showed an insignificant reduction
(t test, p = 0.1). VAMP2-mediated fusion, but not
VAMP7-mediated fusion, was reduced in e/v
neurons. Inhibition of the Arp2/3 complex (CA)
significantly reduced VAMP7-mediated fusion
but not VAMP2-mediated fusion. The low fre-
quency of VAMP2-mediated exocytic fusion in
e/v neurons was rescued by expression of

mDia2 (e/v mDia2). n > 15 cells/condition.

u control

1 CA .
e/v mDia2

VAMP7-LN

VAMP7-mediated exocytosis required Arp2/3 but not Ena/
VASP, suggesting VAMP7 may rely on branched F-actin for
vesicle fusion. VAMP2 has been implicated in growth cone
chemoattraction (Tojima et al., 2007), while VAMP7 is required
for axon elongation (Martinez-Arca et al., 2000). It is possible
that a mechanism similar to the regulated switch in v-SNAREs
and actin regulatory proteins that we identified here may also
be used at other times during neuronal morphogenesis to
regulate exocytosis and therefore membrane extension and
movement.

Integrin Activation Switches the Actin

and Exocytic Machinery Driving Shape Change
Overexpression of as-integrin and attachment to FN rescued
neuritogenesis in e/v neurons. Activated src, a common target
of integrin signaling, also rescued neuritogenesis in e/v neurons,
indicating the changes in cytoskeletal and exocytic machinery
may be triggered by a canonical integrin signaling pathway,
leading to neurite initiation or other morphological changes,
depending on the ECM composition and integrin repertoire
present.

In the cortex, neurons are packed tightly and not in contact
with significant amounts of LN or many other types of common
ECM components that activate integrin signaling—likely the
reason why neurons lacking Ena/VASP exhibit a cortex-specific
neuritogenesis defect in vivo. In fact, the relevant substrate for
neurons undergoing neuritogenesis in the cortex remains
unknown. However, Ena/VASP-deficient neurons elsewhere in
the brain and body are in contact with substantial amounts of in-
tegrin ligands including the ectopic cortical mutant neurons that
reach the pial membrane, dorsal root ganglia, and retinal
neurons and form neurites in the absence of Ena/VASP. The
context-dependent, mutually exclusive pathways may therefore
be used to regulate distinct cell behaviors in different environ-
ments in both physiological and pathological conditions.

As a result of a canonical integrin-signaling pathway, we found
an unexpected switch in exocytic and cytoskeletal machinery.
On LN, Arp2/3 is likely activated downstream of integrin, src,
FAK, and Rac. We anticipate this alters the role of Arp2/3 in
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neuronal morphology seen previously (Korobova and Svitkina,
2008; Pinyol et al., 2007; Strasser et al., 2004). Src, FAK, Rac,
and Arp2/3 share several binding and activity partners, including
paxillin, cortactin, p130Cas, p190RhoGAP, Nck, and Grb2
(Brouns et al., 2001; Brown et al., 2005; Brunton et al., 2004;
Rohatgi et al., 2001; Tehrani et al., 2007; Vuori and Ruoslahti,
1995), which could coordinate FAK and src activity with Rac
and Arp2/3 activation (Rohatgi et al., 2001; Tehrani et al., 2007).

VAMP7-mediated exocytosis was stimulated by LN and
dampened by src, FAK, or Arp2/3 inhibition. This may involve

ev/ LN CA VAMP7

Figure 7. VAMP7 Rescues Neuritogenesis Down-
stream of FAK, Src, Rac, and Arp2/3 Activity

(A) E14.5 neurons cultured 48 hr expressing FP4Mito (e/v)
(blue) + GFP-VAMP7 (green) were plated on PDL or LN.
Phalloidin staining is shown in red. Neurons not express-
ing GFP-VAMP?7 are stained for BllI-tubulin (green). Scale
bar represents 10 um.

(B) Quantification of morphologies, as in Figure 1. n > 3
independent experiments/treatment and n > 25 neurons
per experiment. VAMP7 overexpression rescues neurito-
genesis of e/v neurons on LN with inhibited FAK (FRNK),
Arp2/3 (CA), Rac (RacN17), or src (PP2).

(C) Frequency of VAMP7-mediated vesicle fusion + SEM
in CON E14.5 neurons expressing VAMP7-pHIluorin and
either FRNK or treated with 50 nM PP2 plated on LN.

interaction between Arp2/3 and Exo70 (Liu
et al., 2009; Zuo et al., 2006). Exo70 has been
found to activate or coactivate Arp2/3-medi-
ated actin polymerization (Liu et al., 2009), is
involved in SNARE complex assembly and
stabilization (Wiederkehr et al., 2004), and is
a component of the exocyst complex, which is
integral in vesicle trafficking during neuronal
morphogenesis (Murthy et al.,, 2003). Exo70
overexpression rescued neuritogenesis in e/v
neurons on PDL, similar to VAMP7 overexpres-
sion, and Exo70-mediated neuritogenesis was
dependent on VAMP?7 activity. VAMP7 overex-
pression also rescued neuritogenesis in e/v
neurons on LN following FAK, src, Rac, or
Arp2/3 inhibition; inhibition of these same
molecules decreased the frequency of VAMP7
exocytic events. We propose that VAMP7 is
downstream of these molecules in the LN-
dependent neuritogenesis pathway.

While the entire signaling pathway is not yet
elucidated, the small GTPase Ral is an intriguing
candidate molecule that may connect Arp2/3,
the exocyst complex, and VAMP7 to integrin
signaling. Exocyst-driven filopodia formation
occurs downstream of RalA activity, which
binds to Sec5 of the exocyst complex (Sugihara
et al.,, 2002). Ral is activated by a number of
molecules, including PI3K, which we find does
not function in LN-dependent neuritogenesis;
PDK1 (Tian et al., 2002); and BCARS, which
forms a complex with Cas, Src, and FAK (Gotoh
et al., 2000), some of which we have implicated
in neuritogenesis. Ral is also regulated by direct phosphorylation
by an unknown kinase whose activity is negatively regulated by
the tumor suppressor phosphatase PP2A (Sablina et al., 2007).
PP2A associates with B4-integrin and is involved in bidirectional
integrin regulation. Future work will be needed to understand the
entire regulatory pathways that link ECM to neuritogenesis. Such
information may make it possible to manipulate the pathway to
drive neuritogenesis in a spatiotemporally controlled manner
and therefore be of value in designing therapies to rebuild
a cortex damaged by injury or disease.

Stage 2 mStage 3

m Stage 1
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EXPERIMENTAL PROCEDURES

Cortical Neuron Culture and Transfection
All mouse procedures were approved by the Massachusetts Institute of
Technology Committee on Animal Care.

Cortical neuron cultures were prepared from embryonic day (E) 14.5 mice,
as previously described (Dent et al., 2007; Kwiatkowski et al., 2007). Standard
methods were used for western blotting, fixation, and immunocytochemistry
(Dent et al., 2007). Additional details are available in the Supplemental
Experimental Procedures.

Microscopy

Immunofluorescence images were acquired on an ORCA-ER CCD camera
(Hamamatsu) using a 60 x 1.4 NA Plan Apo (DIC-fluor) Nikon objective on
an inverted TE300 microscope (Nikon) equipped with dual Ludl filter wheels
for excitation and emission. Time-lapse images of neurons were acquired on
an inverted Nikon TE2000U microscope modified to allow for through-the-
objective multispectral TIR-FM using a 100 x 1.45 NA objective. The wave-
length and intensity of the 2W multi-line laser (Coherent) were controlled
with an AOTF. Laser light was focused at the aperture plane and directed to
the coverslip by a dichromatic mirror (Chroma), and the laser angle was
adjusted manually with a micrometer. Since neurons were imaged only 6 hr
after plating and were not tightly adhered to the coverslips, a thick TIRF
illumination field of approximately 200 nm was used. Fluorescence emission
was controlled with a filter wheel device containing narrow bandpass emission
filters (Sutter Instruments). Images were acquired on a CoolSnap HQ2 CCD
camera (Photometrics). Neurons were imaged in Neurobasal media supple-
mented with B27 and kept at 37°C and 5% CO, in an incubation chamber
(Solent) fitted for the microscope. Vesicle dynamics were imaged at 3 s
intervals for 5 min. Exocytic fusion events were imaged at 0.8 s intervals for
5-8 min.

Image Analysis and Statistics

All images were collected, measured, and compiled with Metamorph imaging
software (Molecular Devices). Morphological stage was quantified after 48 hr
in culture; neurites were considered any narrow and consolidated extension
proximal to cell body. Stage 1 neurons lack neurites, stage 2 have one or
more minor neurites, and stage 3 have one neurite at least twice as long as
any other. Vesicle dynamics were tracked using the “Track Points” function
in Metamorph. Vesicle fusion events were specified by the appearance of
avesicle, a bright increase in fluorescence intensity (>3-fold over background),
followed by a rapid diffusion (<2 s). All statistical tests were performed with
AnalyzelT software. ANOVA with a Tukey post-hoc test were used to deter-
mine significance, unless otherwise noted in cases of a standard t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, nine movies, and Supple-
mental Experimental Procedures and can be found with this article online at
doi:10.1016/j.devcel.2010.02.017.
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