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Multipotent neural progenitor cells (NPCs) undergo self-renewal while producing neurons, astrocytes, and
oligodendrocytes. These processes are controlled by multiple basic helix-loop-helix (bHLH) fate determina-
tion factors, which exhibit different functions by posttranslational modifications. Furthermore, depending on
the expression dynamics, each bHLH factor seems to have two contradictory functions, promoting NPC
proliferation and cell-cycle exit for differentiation. The oscillatory expression of multiple bHLH factors
correlates with the multipotent and proliferative state, whereas sustained expression of a selected single
bHLH factor regulates the fate determination. bHLH factors also regulate direct reprogramming of adult
somatic cells into neurons and oligodendrocytes. Thus, bHLH factors play key roles in development and
regeneration of the nervous system. Here, we review versatile functions of bHLH factors, focusing on telen-
cephalic development.
Introduction
During the course of development, neural progenitor cells

(NPCs) are responsible for generating the diverse types of neu-

rons and glial cells that build the nervous system (McConnell,

1995; Okano and Temple, 2009; Breunig et al., 2011). In the

developing telencephalon, NPCs of the lateral ventricular wall

undergo changes in morphology and property and produce

different progeny as brain development proceeds (Fishell and

Kriegstein, 2003; Kriegstein and Alvarez-Buylla, 2009). Neuroe-

pithelial cells, the earliest form of NPCs, constitute a single layer

of pseudostratified columnar epithelium (Figure 1). Neuroepithe-

lial cells are gradually transformed into elongated radial glial (RG)

cells that span the thickness of the brain wall, retaining their cell

bodies in the innermost layer, called the ventricular zone (VZ)

(Figure 1). RG cells undergo asymmetric cell division: each RG

cell divides into two distinct cell types, one RG cell and one

immature neuron or an intermediate progenitor (Götz and Hutt-

ner, 2005; Miller and Gauthier, 2007). Immature neurons migrate

out of the VZ into the outer layers, where they become mature

neurons, while intermediate progenitors migrate into the subven-

tricular zone (SVZ), proliferate further, and give rise to more neu-

rons (Figure 1). Thus, the SVZ is a secondary germinal zone

where further divisions of intermediate progenitors occur to

enlarge the neuronal populations. Neocortical NPCs also give

rise to a new type of RG cells, known as outer RG cells, whose

cell bodies are located in the outer VZ (Figure 1) (Hansen et al.,

2010; Fietz et al., 2010; Wang et al., 2011; Shitamukai et al.,

2011). After producing neurons, RG cells finally differentiate

into glial cells, but some of them are maintained as NPCs in

the postnatal and adult brain.
It has been shown that basic helix-loop-helix (bHLH) factors

play key roles in self-renewal of NPCs and fate determination of

neurons, oligodendrocytes, and astrocytes (Figure 2) (Bertrand

et al., 2002;Rosset al., 2003;Meijer et al., 2012;Namihira andNa-

kashima, 2013). Repressor bHLH factors like Hes1 regulate the

self-renewal of NPCs, whereas proneural bHLH factors, such as

Ascl1 (also called Mash1) and Neurog2, promote neuronal differ-

entiation.Other bHLH factors,Olig1 andOlig2, regulate oligoden-

drocyte differentiation,whileHes1 induces astrocyte formation at

later stages. Thus, bHLH factors play key roles in all these steps

(Figure 2), but recent studies revealed that the regulation is not

that simple. Below, we discuss the recent findings regarding the

complex regulations and functions of these bHLH factors.

bHLH Factors in Telencephalic Development
Maintenance of NPCs by Notch-Hes Signaling

To develop the nervous system with the appropriate number of

neurons and glia, it is essential that NPCs and intermediate pro-

genitors proliferate sufficiently prior to differentiating (Caviness

et al., 1995; Kriegstein and Alvarez-Buylla, 2009). In addition, a

sufficient number of NPCs must be maintained until adulthood

in the SVZ of the lateral ventricles and the hippocampal dentate

gyrus, as they are important for higher brain functions such

as learning and memory. Thus, the maintenance of NPCs

throughout life is essential for brain morphogenesis and func-

tions. NPCs are maintained in an undifferentiated state by

bHLH factors, such as Hes, Hey, and Id family members. Hes1

and Hes5 are widely expressed by NPCs in the VZ of the devel-

oping telencephalon. In addition, Hes3 is expressed at early

stages in the developing nervous system.
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Figure 1. Neural Progenitor Cells in the Developing Telencephalon
MZ, Marginal zone; UL, upper layer; LL, lower layer; SVZ, subventricular zone;
VZ, ventricular zone.

Figure 2. Simplified Roles of bHLH Factors in NPC Self-Renewal and
Cell Fate Determination
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Hes factors form homodimers and bind to specific DNA ele-

ments (i.e., N-box, E-box, or C-site) to repress the expression

of target genes (Figure 3Aa) (Sasai et al., 1992). Although there

are many downstream targets of Hes factors, proneural genes

are the most important targets in the context of neural develop-

ment. Hes factors directly repress the expression of proneural

genes, such as Ascl1 and Neurog2, and in the absence of Hes

genes, proneural gene expression is upregulated, accelerating

neurogenesis (Hatakeyama et al., 2004; Imayoshi et al., 2008).

Hes factors can also antagonize the activity of proneural bHLH

proteins by physical interaction: the Hes-proneural bHLH com-

plex can bind and repress neuronal target genes, resulting in

the inhibition of neurogenesis (Figure 3Ab) (Giagtzoglou et al.,

2003). Thus, Hes factors inhibit neurogenesis by antagonizing

proneural factors via two independent mechanisms: direct tran-

scriptional repression and physical interaction.

Hes factors cooperatively regulate NPC maintenance and

therefore only in compound Hes knockout mice do severe de-

fects of NPCmaintenance occur. InHes1;Hes5 double knockout

mice, the expression of proneural factors is upregulated, leading

to severe premature neuronal differentiation, rapid depletion of

NPCs, and disorganized structures of the developing nervous

system (Ohtsuka et al., 1999; Hatakeyama et al., 2004). Even

more severe and wider defects of premature neurogenesis and

depletion of NPCs occur in the Hes1;Hes3;Hes5 triple knockout

mice (Hatakeyama et al., 2004). However, in the developing

telencephalon, NPCs are maintained and proliferate almost nor-

mally even in the absence of Hes1, Hes3, and Hes5 (Imayoshi

et al., 2008), indicating that the requirement for Hes factors is

different between the telencephalon and other regions. In the

developing telencephalon, Hey1 is highly expressed, and this

expression is upregulated in the absence of Hes1, Hes3, and

Hes5 (Imayoshi et al., 2008), suggesting that Hey1 may compen-

sate for Hes factors to regulate telencephalic development.

Further evidence of the role of Hes factors in the maintenance

of NPCswas obtained by overexpression studies, which showed

that Hes factors inhibit neurogenesis and increase the proportion
10 Neuron 82, April 2, 2014 ª2014 Elsevier Inc.
of undifferentiated NPCs (Ishibashi et al., 1994; Ohtsuka et al.,

2001).

In the developing nervous system, proneural factors, such as

the bHLH transcription activators Ascl1, Neurog1, and Neurog2,

induce neuronal differentiation (Figure 2, see below) (Bertrand

et al., 2002;Wilkinson et al., 2013). These factors also upregulate

the expression of ligands for Notch signaling, such as the trans-

membrane proteins Delta-like1 (Dll1) and Jagged1 (Jag1), which

activate the transmembrane protein Notch in neighboring cells

(Castro et al., 2006; D’Souza et al., 2008; Henke et al., 2009).

Upon activation of Notch, the Notch intracellular domain

(NICD) is released from the transmembrane portion and trans-

ferred to the nucleus, where it forms a complex with the DNA-

binding protein RBPjk and the coactivator Mastermind-like

(Maml) (Kopan and Ilagan, 2009). The NICD-RBPjk-Maml com-

plex is a transcriptional activator and induces the expression of

bHLH transcriptional repressors, such as Hes1 and Hes5,

constituting a so-called canonical pathway. By contrast, Hes3

expression is induced by a noncanonical pathway of Notch

signaling (Androutsellis-Theotokis et al., 2006). Hes factors

then repress the expression of proneural genes andDll1, thereby

inhibiting neuronal differentiation and promoting the mainte-

nance of NPCs. Thus, differentiating neurons inhibit neighboring

cells from differentiating into the same cell type via Notch

signaling, a process called lateral inhibition. This lateral inhibition

prevents simultaneous differentiation of all NPCs, thereby

achieving prolonged NPC maintenance into later stages of

development (Imayoshi et al., 2010). Besides Notch signaling,

Hes5 expression is upregulated by Gcm genes (Hitoshi et al.,

2011). By contrast, in differentiating neurons, even though Notch

signaling is activated, Hes5 expression is suppressed by Bcl6,

which excludes the coactivator Maml1 from NICD and recruits

the histone deacetylase Sirt1 to the Hes5 promoter, thereby re-

inforcing neuronal differentiation (Tiberi et al., 2012). Thus, Hes

expression is controlled at multiple levels.

In addition to Hes factors, Id factors are expressed by NPCs in

the developing brain. In Id1;Id3 double knockoutmice, NPCs exit

the cell cycle prematurely and undergo accelerated neuronal

differentiation (Lyden et al., 1999). Thus, Id factors inhibit



Figure 3. Mechanisms of bHLH Factor
Regulation
(A) bHLH factors activate or repress gene expres-
sion by physically interacting with each other.
(B) Phosphorylation-dependent modulation of
transcriptional activity of proneural factors.
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precocious differentiation of NPCs into neurons. Conversely,

overexpression of Ids in NPC culture blocks neurogenesis, indi-

cating that Id factors are sufficient for NPC maintenance

(Figure 2) (Bai et al., 2007). Id factors form dimers with and

sequester E proteins away from proneural bHLH proteins.

Because Id proteins lack the basic DNA binding motif, the Id/E

heterodimer complex cannot bind to DNA (Figure 3Ac). There-

fore, Id factors function as dominant-negative antagonists of

proneural bHLH transcription factors (Perk et al., 2005). Unlike

Hes1, Id expression is not activated by Notch signaling but

strongly regulated by bone morphogenetic protein (BMP) sig-

naling (Nakashima et al., 2001; Mira et al., 2010).

Proneural Factors for Neurogenesis

In the developing and postnatal brain, proneural bHLH factors

are key regulators of neurogenesis, coordinating a generic

neuronal fate and a specific subtype identity (Bertrand et al.,
Neu
2002; Wilkinson et al., 2013). These fac-

tors are transcriptional activators that

bind to target DNA sequences as hetero-

dimer complexes with ubiquitously ex-

pressed bHLH E proteins (E12, E47,

HEB, or E2-2) (Figure 3Ad). Target genes

for proneural factors include those encod-

ing Notch ligands, such as Dll1, which

activate Notch signaling in neighboring

cells (Castro et al., 2006; Henke et al.,

2009). Thus, proneural factors are com-

ponents of the intercellular regulation

of Notch signaling, contributing to NPC

maintenance. Proneural factors and

Notch ligands are expressed in NPCs, as

well as in intermediate progenitors and

immature neurons, all of which send

Notch signaling inputs to neighboring

NPCs in the germinal zone (Nelson et al.,

2013).

There is also evidence that Ascl1

directly promotes proliferation of NPCs,

in addition to cell-cycle exit and differenti-

ation, highlighting themultiple functions of

proneural factors (Castro et al., 2011).

Chromatin immunoprecipitation (ChIP)-

chip analysis revealed that Ascl1 directly

regulates the genes involved in cell-cycle

exit, neurotransmitter biosynthesis, and

neurite outgrowth, as expected. However,

unexpectedly, this analysis also showed

that Ascl1 directly regulates the genes

involved in cell-cycle progression, in-

cluding those essential for the G1/S
transition and entry into mitosis. Furthermore, when Ascl1 is

acutely inactivated, NPCs in the VZ and the SVZ exit the cell

cycle prematurely (Castro et al., 2011). These results indicate

that Ascl1 promotes the expansion of NPCs as well as their

subsequent cell-cycle exit and neuronal differentiation. This

contradictory dual activity seems to have been evolutionally

conserved, because the Drosophila Ascl1 ortholog Asense pro-

motes self-renewal of neuroblasts but inhibits proliferation of

neuroblast daughter cells (Wallace et al., 2000; Southall and

Brand, 2009).

Dynamic Regulation of Proneural bHLH Factors

The expression of proneural factors, such as Ascl1 and Neurog2,

seems to be dynamically controlled at both the mRNA and pro-

tein levels. In NPCs, the RNase III Drosha destabilizes Neurog2

mRNA in a microRNA-independent manner by recognizing the

hairpin structures of 30 UTR of Neurog2 mRNA. Therefore,
ron 82, April 2, 2014 ª2014 Elsevier Inc. 11
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inactivation of Drosha promotes neuronal differentiation by

stabilization of Neurog2 mRNA (Knuckles et al., 2012), sug-

gesting that a reduction in Drosha activity regulates the onset

of neuronal differentiation. In addition, Neurog1/2 proteins

have short half-lives, less than 30 min, which, along with their

proneural activity, are dynamically controlled in NPCs and inter-

mediate progenitors (Ali et al., 2011; Hindley et al., 2012). In the

mouse Neurog2 protein, nine serine-proline sites are subjected

to phosphorylation by Cyclin-dependent kinases (CDKs). When

the overall phosphorylation state is increased, the protein sta-

bility, DNA binding to the E-box, and neuronal differentiation

potency are diminished, indicating that cell-cycle machinery

negatively regulates neurogenesis through the phosphorylation

of Neurog2 protein. Indeed, an unphosphorylated form of

Neurog2 can more efficiently activate expression of the neu-

ronal differentiation gene Neurod1 than can the phosphorylated

form (Figure 3B, bottom). However, this transcriptional activity

is promoter specific, and both phosphorylated and unphos-

phorylated forms can similarly activate expression of the Notch

ligand Dll1 (Figure 3B, top). A recent study showed that gly-

cogen synthase kinase 3 (GSK3) also regulates Neurog2 pro-

neural activity in the developing neocortex (Li et al., 2012).

Threonine-proline phosphorylation by GSK3 inhibits the tran-

scriptional activity of Neurog2 by preventing the dimer forma-

tion. Interestingly, early stage cortical NPCs have low levels of

GSK3 activity, whereas at later embryonic periods GSK3 is pro-

gressively activated in cortical NPCs. Indeed, the proneural

activity of Neurog2 is stronger in early stage cortical progenitors

than in later stages, oppositely correlating with GSK3 activity (Li

et al., 2012).

Ascl1 protein also seems to be destabilized in NPCs. It was

reported that NICD induces ubiquitin-proteasome-dependent

rapid degradation of Ascl1 protein with a half-life of just 14 min

in human cells (Sriuranpong et al., 2002). However, Ascl1 is sta-

bilized when NICD is absent (half-life is 50 min) (Sriuranpong

et al., 2002), suggesting that this stabilization leads to accumu-

lation of Ascl1 protein, thereby promoting neuronal differentia-

tion. Furthermore, posttranslational modification is important

for Ascl1 protein stability. Nonphosphorylated Ascl1 protein

is very unstable, whereas CK2-mediated phosphorylation of

S152 stabilizes Ascl1 protein (Viñals et al., 2004).

Neurog1 and Neurog2 expression is restricted to the dorsal

telencephalon, which gives rise to pyramidal cells (glutamatergic

neurons), whereas Ascl1 is predominantly expressed in the

ventral telencephalon, which gives rise to cortical interneurons

(GABAergic neurons), suggesting that proneural factors also

contribute to specification of neuronal subtype identities.

Indeed, in the dorsal telencephalon, loss- and gain-of-function

studies have revealed that Neurog1 and Neurog2 are necessary

and sufficient to specify a glutamatergic neuronal identity (Fode

et al., 2000; Parras et al., 2002; Schuurmans et al., 2004; Mattar

et al., 2004, 2008; Britz et al., 2006; Kovach et al., 2013). In the

ventral telencephalon, similar studies have revealed that Ascl1

is necessary and sufficient to specify a GABAergic interneuron

identity (Casarosa et al., 1999; Horton et al., 1999; Berninger

et al., 2007; Poitras et al., 2007). Below, we summarize how pro-

neural bHLH factors contribute to the specification of distinct

neuronal cell fates.
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Glutamatergic Neuronal Specification by Neurogenins

Neurog1 and Neurog2 are expressed in the developing dorsal

telencephalon, which includes the anlagen of the neocortex

and hippocampus. Essential roles of Neurog1/2 in neocortical

development were revealed by loss-of-function studies (Schuur-

mans and Guillemot, 2002). The formation of cortical projection

neurons is severely impaired in Neurog2 and Neurog1/2 dou-

ble-mutant mice. Furthermore, the number of Cajal-Retzius neu-

rons, a layer I cortical population, is diminished in Neurog2

mutant mice (Imayoshi et al., 2008; Dixit et al., 2014). Defects

of fate specification of layer V and VI early-born neurons to glu-

tamatergic neurons are most evident in the absence of Neurog2

(Schuurmans et al., 2004). The production of hippocampal pro-

jection neurons and dentate granule cells is also affected in

Neurog2mutant mice (Galichet et al., 2008). Conversely, overex-

pression studies provided evidence for the sufficiency of

Neurog1/2 in the fate specification of these glutamatergic neu-

rons (Mattar et al., 2004, 2008; Kovach et al., 2013). Thus,

Neurog1/2 are necessary and sufficient to specify glutamatergic

neurons throughout telencephalic development. Interestingly,

Neurog1/2 repress the differentiation program of GABAergic

neurons. In the dorsal telencephalon of Neurog1/2 double- and

even Neurog2 single-mutant mice, misexpression of Ascl1 and

many GABAergic neuronal markers, such as Dlx, Gad1/2,

and VGAT, occurs (Schuurmans et al., 2004). Furthermore, in

the knockin mice, in which the coding region of the Neurog2

locus was swapped for the Ascl1 sequence, dorsal cortical pro-

genitors are misdirected toward the GABAergic neuronal fate

(Fode et al., 2000).

In the dorsal telencephalon, RG cells express the homeodo-

main transcription factor Pax6, whereas intermediate progeni-

tors express the T-box transcription factor Tbr2. Most cortical

pyramidal neurons are generated via Tbr2-positive intermediate

progenitors, and these cells typically go through one round of

cell division (Götz and Huttner, 2005). This division is believed

to increase the neuronal population of the neocortex. It was

shown that Neurog2 directly regulates expression of Tbr2 and

that Neurog2 is necessary and sufficient to promote the transi-

tion of RG cells to intermediate progenitors (Ochiai et al.,

2009). Neuronal differentiation is tightly coupled with cell-cycle

exit, and it is likely that increased expression of Neurog1/2 leads

to gradual accumulation of cell-cycle inhibitors, such as p21

(Cip1), p27 (Kip1), p57 (Kip2), and BM88 (Cend1) (Politis et al.,

2007; Lange et al., 2009). Interestingly, p27 also promotes neu-

rogenesis by stabilizing Neurog2 protein through direct interac-

tion (Nguyen et al., 2006).

Neuronal migration is critical for establishing neocortical cell

layers, and migration defects can cause neurological and psy-

chiatric diseases. Neurog2 is important for the radial migration

of cortical pyramidal neurons by regulating the formation of

neuronal polarity and development of a leading process. It was

found that RhoA inhibits neuronal migration by tight regulation

of F-actin polymerization and microtubule assembly. Neurog2

enhances neuronal migration, independently of its proneural

activity, but by activating Rho-GAP expression via C-terminal

tyrosine (Y241) phosphorylation that leads to inhibition of RhoA

activity (Hand et al., 2005). Furthermore, Neurog2 promotes

neuronal migration by upregulating the expression of Rnd2, an
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inhibitor of RhoA signaling, independently of Y241 phosphoryla-

tion (Heng et al., 2008). Thus, Neurog2 can promote neuronal

migration by inhibiting RhoA activity via two independent mech-

anisms: Y241 phosphorylation and Rnd2 induction.

After glutamatergic neuronal specification by Neurog1/2,

terminal differentiation of cortical and hippocampal neurons

are regulated by other bHLH factors. Transient expression of

Neurog1/2 in NPCs and early-phase intermediate progenitors in-

duces the subsequent expression of bHLH gene cascades, such

as those encoding NeuroD1/2/4/6, bHLHb5, Nscl1/2, andMath6

(so-called bHLH differentiation factors) (Mattar et al., 2004, 2008;

Kovach et al., 2013). As in the case of proneural bHLH factors,

overexpression of bHLH differentiation factors induces neuronal

differentiation and cell-cycle exit. Like proneural bHLH factors,

bHLH differentiation factors specifically bind to E-box con-

sensus sequences and activate downstream gene expression.

These bHLH differentiation factors redundantly regulate various

maturation processes of glutamatergic neurons, such as migra-

tion, polarization, axon and dendrite maturation, survival, and

synaptic formation. Thus, neuronal differentiation and matura-

tion defects are evident only in compound mutants of these fac-

tors (Schwab et al., 2000).

GABAergic Neuronal Specification by Ascl1

Ascl1 is predominantly expressed by NPCs in the ventral telen-

cephalon, such as in the medial, lateral, and caudal ganglionic

eminences. It is known that GABAergic inhibitory neurons are

born in the germinal zone of the ganglionic eminence and

tangentially migrate to the neocortex. In Ascl1 knockout mice,

the production of GABAergic neurons is massively attenuated

(Casarosa et al., 1999; Horton et al., 1999), whereas overexpres-

sion of Ascl1 induces ectopic production of GABAergic neurons

from dorsal cortical NPCs (Berninger et al., 2007; Poitras et al.,

2007). In Ascl1 knockout mice, defects in interneuron production

are the most pronounced in the medial ganglionic eminence,

whereas striatal neuronal formation occurs normally in the lateral

ganglionic eminence, suggesting that other factors can substi-

tute for Ascl1 in the generation of striatal neurons. Indeed, striatal

development is severely affected inAscl1;Gsx2 double knockout

mice (Wang et al., 2009). Conversely, transient accumulation of

Ascl1 in NPCs and early-phase progenitors induces the subse-

quent expression of GABAergic differentiation gene cascades,

such as those encoding Dlx1/2/5/6 and Lhx6 (Yun et al., 2002;

Petryniak et al., 2007; Miyoshi et al., 2010; Bartolini et al.,

2013). Overexpression of Neurog2 at high levels by in utero

electroporation can induce a cortical projection neuron pheno-

type in the ventral telencephalon (Mattar et al., 2008). However,

loss of Ascl1 does not induce ectopic expression of Neurog2 or

other glutamatergic neuronal markers in the ventral telenceph-

alon, and replacement of Ascl1 by Neurog2 by a ‘‘knockin’’

method does not result in the respecification of GABAergic neu-

rons into glutamatergic neurons in the ventral telencephalon

(Parras et al., 2002). These results indicate that additional path-

ways act in parallel to those involving proneural proteins to

specify GABAergic neuron identities in the ventral telenceph-

alon, such as those involving the homeodomain transcription

factors Gsx1/2.

Although Neurog1/2 and Ascl1 have opposing cell fate speci-

fication functions in the telencephalon (glutamatergic versus
GABAergic), these factors are coexpressed or sequentially ex-

pressed in the same lineage, such as in Cajal-Retzius neurons

or in postnatal-born hippocampal dentate granule cells (Kim

et al., 2007; Dixit et al., 2011). In the dorsal telencephalon,

Ascl1 is also coexpressed with Neurog1/2 by a subset of cortical

VZ and SVZ progenitors (Britz et al., 2006), albeit at lower levels

than in the ventral telencephalon, and regulates neuronal migra-

tion by activating another Rho GTPase, Rnd3 (Pacary et al.,

2011).

Olig1/2 for Oligodendrocyte Formation

Olig1/2, two closely related bHLH transcription factors, have

been identified as essential factors in the fate choice of oligoden-

drocytes (Figure 2) (Meijer et al., 2012) and also regulate their

subsequent differentiation, maturation, and myelination. Olig2

single and Olig1/2 double knockout mice lack oligodendrocyte

lineage cells (Lu et al., 2002; Zhou and Anderson, 2002; Take-

bayashi et al., 2002), whereas forced expression of Olig1/2 in

NPCs is sufficient to induce the specification of oligodendrocyte

precursor cells (OPCs) (Zhou et al., 2001; Lu et al., 2001). Olig2

functions as a repressor (Figure 3Ae) (Novitch et al., 2001;

Zhou et al., 2001) but directly activates the expression of the

oligodendrocyte-specific gene Sox10 by forming a heterodimer

with E proteins (Figure 3Ae) (Küspert et al., 2011). Initial studies

analyzed the functions of Olig1/2 in the developing spinal cord

and hindbrain, where motor neurons and oligodendrocytes are

sequentially derived from common NPCs of the pMN domain

(Goulding, 2009). It was shown that Olig1 and Olig2 have over-

lapping functions in oligodendrogenesis, although Olig2 plays

a dominant role in patterning the pMN domain. In the absence

of Olig2, the formation of the pMN domain is severely dimin-

ished, and both motoneurons and oligodendrocytes are mostly

missing, indicating that Olig2 is essential for the specification

of both motoneurons and oligodendrocytes in the developing

spinal cord and hindbrain (Lu et al., 2002; Zhou and Anderson,

2002; Takebayashi et al., 2002). In the absence ofOlig1, matura-

tion of oligodendrocytes is affected (Lu et al., 2002; Xin et al.,

2005), suggesting a role for Olig1 in the differentiation process

leading to myelinating oligodendrocytes. This feature is more

apparent in response to demyelinating injury: Olig1 knockout

mice display a limited ability to repair demyelinated lesions that

were induced by gliotoxins (Arnett et al., 2004).

Functions of Olig2 in oligodendrocyte formation in the telen-

cephalon have been intensively analyzed by conditional dele-

tions at various time points during differentiation, from NPCs to

OPCs and mature oligodendrocytes, unveiling stage-specific

regulatory roles of Olig2 (Yue et al., 2006; Cai et al., 2007; Zhu

et al., 2012; Mei et al., 2013). Similar to the results in the spinal

cord and the hindbrain, Olig1 and Olig2 have nonoverlapping

roles in proliferation and differentiation of NPCs and OPCs.

Olig1 promotes the differentiation of committed OPCs, and this

function is more apparent in a repairing process than in normal

development (Arnett et al., 2004). By contrast, Olig2 functions

at earlier stages of development, promoting the fate determina-

tion to OPCs and certain types of neurons, such as cholinergic

neurons, in the telencephalon (Furusho et al., 2006).

The differentiating functions of Olig2 are regulated by post-

transcriptional modifications, especially by phosphorylation (Se-

toguchi and Kondo, 2004; Meijer et al., 2012). For example,
Neuron 82, April 2, 2014 ª2014 Elsevier Inc. 13
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serine phosphorylation at the ST box of mouse Olig2 protein by

CK2 kinase activates the activity for generating OPCs (Huillard

et al., 2010). By contrast, serine (S147) phosphorylation in its

bHLH domain by PKA is important for motor neuron formation,

and its dephosphorylation triggers the transition from motor

neuron to oligodendrocyte formation in the pMN domain (Li

et al., 2011). This phosphorylation in the bHLH domain promotes

homodimer formation of Olig2 protein, whereas dephosphoryla-

tion promotes heterodimer formation with Neurog2 protein,

whose proneural activity is essential for motoneuron specifica-

tion. It is likely that Olig2-Neurog2 heterodimer formation

sequesters Neurog2 in the pMN domain, thereby preventing

motoneuron formation. Indeed, Olig2 mutant mice carrying a

serine-to-alanine substitution at position 147, which promoted

Olig2-Neurog2 heterodimer formation, impaired motoneuron

specification (Li et al., 2011).

At early developmental stages, Olig2 opposes differentiation

and promotes proliferation of self-renewing NPCs. This prolifer-

ative function of Olig2 is critically regulated by developmentally

controlled phosphorylation of a triple serine motif at the N-termi-

nal region. Mouse Olig2 protein is phosphorylated at these resi-

dues in NPCs during the early stage of embryos, whereas in the

postnatal white matter, the triple serine motif is nonphosphory-

lated (Sun et al., 2011). When phosphorylated at these positions,

the proliferative function of Olig2 becomes dominant over its

differentiation functions. Interestingly, this triple serine motif of

Olig2 is highly phosphorylated in malignant gliomas. These re-

sults indicate that Olig2 has contradictory functions, NPC

proliferation and oligodendrocyte formation, depending on the

phosphorylated status.

In addition to Olig1/2, it has been reported that Ascl1 also

specifies anOPCcell fate in telencephalic NPCs at later develop-

mental stages (Parras et al., 2004, 2007; Nakatani et al., 2013)

and can force an oligodendrocyte fate when overexpressed in

NPCs of the adult dentate gyrus (Jessberger et al., 2008).

Astrocyte Fate Determination

Currently, a singlemaster bHLH factor for astrocyte fate determi-

nation has not been identified, unlike proneural factors in neu-

rons and Olig factors in oligodendrocytes (Ross et al., 2003;

Namihira and Nakashima, 2013). Many studies reported the

importance of Notch signaling and downstream Hes factors as

well as Id factors in astrocyte formation, but these factors are

not sufficient for specifying embryonic NPCs into astrocytes

(Figure 3Af) (Cai et al., 2000; Ohtsuka et al., 2001; Tanigaki

et al., 2001; Wu et al., 2003; Namihira et al., 2009). For example,

overexpression of Hes or Id factors in NPCs increased the pro-

portion of astrocytes when analyzed long after the manipulation,

or promoted the formation of astrocytes in late-phase or adult

NPCs (Cai et al., 2000; Ohtsuka et al., 2001; Tanigaki et al.,

2001). However, Hes and Id fail to prematurely induce astrocyte

formation, when these factors are overexpressed at early stages

in NPCs in the developing telencephalon (Cai et al., 2000;

Ohtsuka et al., 2001). Therefore, the increased activities of

Notch-Hes and Id factors are not sufficient for astrocyte fate

determination and may permissively instruct astrocytic fate by

inhibition of the other fates, neurons, and oligodendrocytes.

Accumulating evidence indicates that extrinsic cues, such as

cytokine signaling through the JAK/STAT3 pathway and BMP
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signaling, and epigenetic modification of astrocytic genes are

critically involved in astrocyte fate determination and differentia-

tion (Namihira and Nakashima, 2013).

The gp130-Janus kinase (JAK) is activated by leukemia

inhibitory factor (LIF) or cardiotrophin-1 (CT-1) and phosphory-

lates the downstream effector STAT3, thereby activating it.

Phosphorylated STAT3 can then directly bind to the promoter

sequences of many astrocyte genes, such as Gfap, and upregu-

late their expression (Figure 3Af). Treatment of cultured NPCs

with another group of cytokines, BMPs, can synergistically

promote astrocyte formation via the JAK-STAT pathway by acti-

vating downstream Smad transcriptional factors (Nakashima

et al., 1999). Activated Smads can form a complex with

STAT3, which is mediated by the transcriptional coactivator

p300/CBP, and participate in the induction of astrocytic

gene expression (Figure 3Af). Interestingly, this process is in-

hibited by the proneural factor Neurog1, which sequesters the

Smads-p300/CBP complex away from STAT3 (Sun et al.,

2001). Therefore, competition for limiting cofactors by fate

determination factors may be involved in mutually exclusive

cell fate choices. Indeed, astrocyte formation is ectopically

induced in compound proneural factor mutant mice (i.e.,

Neurog2;Ascl1 and Ascl1;Math3 double knockout mice) (Tomita

et al., 2000; Nieto et al., 2001). Thus, proneural factors actively

inhibit astrocyte formation, thereby reinforcing the neuronal

fate determination. Furthermore, the oligodendrocyte determi-

nation factor Olig2 is a negative regulator of astrocytic genes

and inhibits astrocyte formation in NPCs and glial-restricted

progenitors (Cai et al., 2007).

Astrocyte formation is strongly inhibited at early develop-

mental stages; combinatorial treatment of cultured NPCs with

LIF and BMP very efficiently induces astrocyte formation at

late stages but fails to do so at early stages (Nakashima et al.,

1999; Takizawa et al., 2001). This stage-dependent regulation

is achieved by epigenetic modifications, such as DNA and his-

tonemethylation. Because the promoter sequences of astrocytic

genes, includingGfap and S100b, are highly methylated in early-

stage NPCs, STAT binding to these promoters is hindered

(Takizawa et al., 2001). As the development proceeds, DNA se-

quences of astrocytic genes become demethylated and NPCs

then become responsive to astrocyte-inducing cytokines, indi-

cating that the timing of astrocyte formation during brain devel-

opment is critically regulated by DNA methylation. Various

mechanisms for regulating DNA methylation of astrocytic genes

have been revealed. For example, nuclear factor 1A/B (NFIA/B),

in cooperation with Notch signaling, plays a critical role in the de-

methylation and initiation of astrocytic gene expression (Deneen

et al., 2006; Namihira et al., 2009). Hypoxia-inducible factor

(HIF)-1a and orphan receptor Coup-TFI/II also contribute to the

demethylation of astrocytic genes during brain development

(Naka et al., 2008; Mutoh et al., 2012). In addition to DNAmethyl-

ation, histone methylation is also involved in astrocyte formation.

The H3K9 methyltransferase ESET and high mobility group A

(HMGA) proteins are known to repress accelerated astrocyte

production (Tan et al., 2012a; Kishi et al., 2012), whereas

Polycomb promotes a neurogenic to astrogenic fate transition

(Hirabayashi et al., 2009). In summary, the negative bHLH factors

Hes and Id promote astrocyte formation by inhibiting neuronal
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and oligodendrocyte lineage choice with the help of astrocyte-

inducing cytokines and epigenetic modifiers.

Expression Dynamics of bHLH Factors in Multipotency
and Cell Fate Choice
Oscillatory Expression in Multipotent NPCs

As discussed above, it has been shown that cell fate determina-

tion factors such as Ascl1, Hes1, and Olig2 have contradictory

functions: promoting NPC proliferation versus cell differentiation

(Ascl1 for neurons, Hes1 for astrocytes, and Olig2 for oligoden-

drocytes). However, the detailed mechanisms by which they

display such contradictory functions still remain to be analyzed.

It was previously shown that Hes1 expression oscillates in

many cell types (Figure 4) (Hirata et al., 2002; Masamizu et al.,

2006; Shimojo et al., 2008; Kobayashi et al., 2009). Activation

of theHes1 promoter generatesHes1mRNA and then Hes1 pro-

tein, which can repress its own expression by directly binding to

the Hes1 promoter. Due to this negative feedback, Hes1 mRNA

disappears rapidly, because it is extremely unstable. Hes1 pro-

tein is also rapidly degraded by the ubiquitin-proteasome sys-

tem, allowing the next round of activation of the Hes1 promoter.

In this way, Hes1 expression oscillates autonomously with a

period of 2 to several hours (Figure 4). Time-lapse imaging ana-

lyses using the Hes1 promoter-driven destabilized luciferase re-

porter, which monitors Hes1 mRNA production, revealed that

Hes1 mRNA expression oscillates with a period of about 2 to

3 hr in NPCs (Shimojo et al., 2008). However, because it is known

that transcription and translation can be dissociated in stem cells

(Lu et al., 2009), live imaging with new transgenic reporter mice

was employed to monitor protein expression. These reporter

mice carried a bacterial artificial chromosome (BAC) clone in

which luciferase or fluorescent cDNA was inserted into the 50 re-
gion of each factor gene so that a fusion protein was expressed.

In these reporter mice, the luciferase or fluorescent activity pre-

cisely monitors the endogenous protein expression (Imayoshi

et al., 2013). Time-lapse imaging analyses clearly showed that

Hes1 and Ascl1 protein expression oscillate with a period of

about 2 to 3 hr, while Olig2 protein expression oscillates with a

period of about 5 to 8 hr in NPCs (Figure 5). Inactivation of

Hes1 does not affect Olig2 oscillation but abolishes Ascl1 oscil-

lation. Thus, it is likely that Hes1 oscillation periodically represses
Ascl1 expression, thereby driving Ascl1 oscillation, but that Olig2

expression oscillates independently of Hes1 and Ascl1 oscilla-

tion (Imayoshi et al., 2013). Together, these results indicate

that three types of cell fate determination factors are expressed

in an oscillatory manner by multipotent NPCs (Figure 5).

Sustained Expression during Cell Fate Choice

Time-lapse imaging analyses of individual cells showed that dur-

ing neuronal fate choice Ascl1 expression occurs in a sustained

manner after cell division (Figure 5) and that 6 to 8 hr later expres-

sion of the early neuronal marker Doublecortin (DCX) starts.

Ascl1 expression continues to be upregulated in many differen-

tiating cells but not in others; more than 20% of differentiating

immature neurons soon downregulate Ascl1 expression after

DCX is expressed, suggesting that the minimal requirement for

neuronal fate determination is accumulation of Ascl1 over 6 to

8 hr during G1 phase (Imayoshi et al., 2013). What causes the

transition from oscillatory to accumulative Ascl1 expression in

NPCs? During the neuronal fate choice process, the levels of

NICD, an active form of Notch signaling, fluctuate in NPCs, which

results in unstable Hes1 oscillation and even in disappearance of

Hes1 expression, leading to sustained upregulation of Ascl1.

When stable levels of NICD expression are induced in NPCs,

Hes1 oscillation continues in a stable manner, and Ascl1 expres-

sion is never upregulated. These results suggest that fluctuation

in NICD levels triggers the transition from oscillatory to sustained

Ascl1 expression (Imayoshi et al., 2013).

NPCs frequently undergo asymmetric cell division, in which

one daughter cell remains undifferentiated while the other differ-

entiates into a neuron. Before this cell division, Hes1 expression

is downregulated, and concomitantly Ascl1 expression is upre-

gulated in a sustainedmanner. Ascl1 seems to be equally distrib-

uted into both daughter cells, and the daughter NPC resumes

Hes1 and Ascl1 oscillations, whereas the daughter neuron main-

tains repressed Hes1 expression and accumulates Ascl1. Thus,

transient upregulation of Ascl1 before cell division is the first sign

for a bias toward asymmetric cell division with neuronal differen-

tiation (Imayoshi et al., 2013). However, it is not a decisive sign,

as many NPCs produce two daughter NPCs even when Ascl1 is
Neuron 82, April 2, 2014 ª2014 Elsevier Inc. 15



Figure 6. Optogenetic Approach to Control Expression Dynamics
(A) hGAVPO activates gene expression by blue light illumination.
(B) The hGAVPO system shows that oscillatory expression of Ascl1 activates the proliferation of NPCs, whereas sustained expression of Ascl1 promotes neuronal
differentiation.
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transiently upregulated before cell division. These results indi-

cate that accumulation of Ascl1 during G1 phase is the only deci-

sive sign for neuronal fate determination.

During astrocyte and oligodendrocyte differentiation, the ex-

pressions of Hes1 and Olig2, respectively, are upregulated,

although they are still oscillatory (Figure 5). However, even during

trough phases, both Hes1 and Olig2 levels are higher than they

are in NPCs, indicating that Hes1 and Olig2 expressions

continue in a sustained manner during astrocyte and oligoden-

drocyte differentiation (Imayoshi et al., 2013). When Hes1 or

Olig2 becomes dominant, the expression of the other two factors

is downregulated. These results indicate that Ascl1, Hes1, and

Olig2 are expressed in an oscillatory manner in multipotent

NPCs and that one of them becomes dominant during cell fate

choice. Thus, the multipotent state correlates with oscillatory

expression of several fate determination factors, whereas the

differentiated state correlates with sustained expression of a

selected single factor (Figure 5).

Optogenetic Approach to Control Expression Dynamics

To address whether the correlation between expression dy-

namics (oscillatory versus sustained) and outcomes (prolifera-

tion versus differentiation) has a causative relationship, an

optogenetic approach has been employed to control the Ascl1

expression patterns. GAVPO is a light-activatable, hybrid protein

consisting of the light-inducible dimerizing protein Vivid (VVD), a

Gal4 DNA-binding domain, and a p65 transcriptional activation

domain (Figure 6A) (Wang et al., 2012). A dimer form, but not a

monomer form, of the Gal4 DNA-binding domain can interact

with UAS sequences. Blue light illumination activates VVD, form-

ing a dimer, and a dimer form of the Gal4 DNA-binding domain

binds to the UAS sequences. Then, the p65 transcriptional

activation domain upregulates the gene expression under the

control of the UAS sequences (Figure 6A). Optimizing the codon

usage of GAVPO (hGAVPO) and destabilizing the target mRNA

enable the control of dynamic gene expression (e.g., oscillatory

or sustained expression) by changing the blue light illumination

patterns. The significance of gene expression dynamics was
16 Neuron 82, April 2, 2014 ª2014 Elsevier Inc.
examined by introducing this Ascl1-inducible system into Ascl1

null NPCs. Light-induced sustained Ascl1 expression enhances

neuronal differentiation, whereas light-induced oscillatory Ascl1

expression with 3 hr periodicity activates proliferation of NPCs

(Figure 6B). When this system is introduced into NPCs in the dor-

sal telencephalon, sustained expression of Ascl1 increases the

number of differentiating neurons that migrate out of the ventric-

ular zone, whereas oscillatory expression of Ascl1 maintains

dividing NPCs in the ventricular zone. Thus, distinct (oscillatory

versus sustained) expression dynamics of Ascl1 are important

for the choice between proliferation and differentiation (Imayoshi

et al., 2013). Together, these data suggest that the relationship

between the gene expression dynamics of Ascl1 and its func-

tions is not just correlative but also causative and that manipula-

tion of Ascl1 expression can impose a choice favoring NPC

proliferation or neuronal differentiation according to whether

the expression is oscillatory or sustained.

The 3 hr periodicity of Ascl1 oscillation is important for NPC

proliferation, because a 6 hr period does not activate it (Imayoshi

et al., 2013). Whether the period of oscillatory expression corre-

lates with that of cell cycle remains to be determined. The

expression of bHLH factors might oscillate more slowly or

become steady in slowly cycling NPCs, and further analyses

are required to understand the significance of oscillation periods

and dynamics.

This light-inducible system can precisely change the dura-

tion of sustained Ascl1 expression to determine the minimal

requirement for the neuronal fate choice. This analysis revealed

that only 6 to 8 hr of sustained Ascl1 expression is needed to

activate neuronal differentiation (Imayoshi et al., 2013). This

agrees well with the above time-lapse imaging results showing

that the early neuronal marker expression starts after 6 to 8 hr

of sustained Ascl1 expression during the G1 phase. There may

be a critical period within the G1 phase for neuronal fate

determination, and therefore a period longer than 8 hr of sus-

tained Ascl1 expression shows a higher chance of neuronal

fate choice.



Figure 7. Three-Way Seesaw Models for
Multipotency
Oscillatory expression (A) or balanced coex-
pression (B) of three cell fate determination factors
may lead to the multipotent state.
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Seesaw Model for Multipotency

The above results indicate that multipotency is a state of oscilla-

tory expression of multiple fate determination factors. Inmultipo-

tent NPCs, which can generate three different cell lineages, three

types of cell fate determination factors, Ascl1, Hes1, and Olig2,

oscillate in competition with one another, in a sort of three-way

seesaw (Figure 7A). At the peak of Ascl1 oscillation, cells have

a higher tendency to differentiate into neurons, but this tendency

is not decisive; oscillating Ascl1 just maintains the potency to

generate neurons. Producing new proteins but degrading them

at once sounds like an enormous waste of energy. Why do

stem cells waste such energy? An alternative and more thrifty

way to maintain multipotency might be to repress the expression

of cell fate determination factors but keep their gene promoters

open, so that any cell fate determination factor can be expressed

when it is necessary. Such a repressive state can be induced in

NPCs at early stages by sustained Hes1 expression, which leads

to repression of other cell fate determination factors. These cells

do not differentiate into astrocytes but remain undifferentiated,

because they are epigenetically resistant to astrocyte differenti-

ation at early stages. However, as described above, cell fate

determination factors such as Ascl1 can actually promote cell-

cycle progression when they are expressed in an oscillatory

manner. Such periodic production of cell fate determination fac-

tors seems to be a driving force for cell-cycle progression,

although the exact mechanism remains to be determined.

Indeed, sustained expression of Hes1 represses proneural

gene expression and inhibits proliferation of NPCs (Baek et al.,

2006). Furthermore, in the isthmus, roof plate, and floor plate

of the developing nervous system, where Hes1 expression is

sustained, cells are negative for proneural gene expression,

and they are mostly quiescent (Baek et al., 2006). Thus, it is likely

that oscillatory expression of multiple fate determination factors

leads NPCs to actively divide, whereas sustained Hes1 expres-

sion with the concomitant sustained repression of other fate

determination factors generates quiescent NPCs. It has been

shown that sustained Hes1 expression is required for the quies-

cent state of fibroblasts and that, without Hes1, cells become

senescent, an irreversible dormant state in which cells never

enter the cell cycle (Sang et al., 2008).

Another way to maintain multipotency might be sustained and

balanced expression of three types of cell fate determination

factors, like the original seesaw model proposed for induced
Neur
pluripotent stem cell (iPSC) formation

(Figure 7B) (Shu et al., 2013). Surprisingly,

in this model, co-overexpression of mes-

endodermal specifiers such as Gata6

and ectodermal specifiers such as

GMNN can counteract each other for

lineage specification, facilitate reprog-

ramming, and synergistically induce plu-
ripotency (Shu et al., 2013). The mesendodermal specifiers

inhibit ectodermal specification, and the ectodermal specifiers

inhibit mesendodermal specification. When the expressions of

these two specifiers are balanced, cells cannot choose a cell

fate and are likely to enter the pluripotent state. Thus, it is

possible that balanced coexpression of Ascl1, Hes1, and Olig2

in NPCs does not enable them to choose a cell fate and may

lead to multipotency, like the original seesaw model. However,

such a balance is not robust and seems to be easily broken by

intrinsic and extrinsic fluctuating stimulants (such as fluctuating

NICD), making it difficult to maintain such a balance or the

NPC state. Thus, we speculate that although oscillatory expres-

sion of multiple cell fate determination factors may spend

enormous energy, it enables a metastable state to maintain pro-

liferative and multipotent conditions with some resistance to

fluctuating stimuli or noise.

Regulation and Function of Oscillating Factors

It is surprising that Ascl1 can have opposite functions depending

on its expression dynamics, but how the oscillatory and sus-

tained expressions of Ascl1 differentially regulate downstream

gene expression is unknown. It was reported that, depending

on the phosphorylation status, the proneural factor Neurog2 ex-

hibits different transcriptional activities in NPCs and differenti-

ating neurons (Figure 3B) (Ali et al., 2011; Hindley et al., 2012).

Ascl1 may also be differentially phosphorylated in NPCs and

neurons, thereby controlling different gene expression, although

the posttranslational regulation of Ascl1 functions remains to be

analyzed. It was reported that cell-cycle progression genes

controlled by Ascl1 have RBPjk-binding sites as well as Ascl1-

binding sites (Castro et al., 2011). Thus, Ascl1 and Notch

signaling may cooperatively activate these genes in NPCs,

although further studies are required to understand the detailed

mechanism.

The expression dynamics of Ascl1 target genes is largely un-

known. Time-lapse imaging analyses showed that Dll1 mRNA

expression, which is activated by Ascl1 and repressed by

Hes1, oscillates in NPCs but is sustained in neurons, although

it remains to be determined whether Dll1 protein expression

also oscillates in NPCs (Shimojo et al., 2008). Sustained expres-

sion of Hes1 in subsets of NPCs constitutively represses Dll1

expression, leading to inactivation of Notch signaling in neigh-

boring NPCs. This results in premature neuronal differentiation

in the VZ, suggesting that oscillatory expression of Hes1 and
on 82, April 2, 2014 ª2014 Elsevier Inc. 17
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Dll1 is required for proper maintenance of NPCs in the devel-

oping nervous system (Shimojo et al., 2008). Other downstream

factors may be expressed in different manners. If they are stable,

they cannot oscillate, and Hes1 and Ascl1 oscillations may lead

to accumulation of downstream factors in a stepwise manner in

NPCs. When the expression levels of such downstream factors

reach a certain value, new events might occur. In this case, infor-

mation about the number of pulses of Hes1 and Ascl1 oscilla-

tions can possibly be converted into the timing of the next event.

Such amodel was proposed for microRNA-9 (miR-9), which reg-

ulates the stability of Hes1 mRNA (Bonev et al., 2012; Tan et al.,

2012b). Overexpression of miR-9 represses Hes1 expression by

destabilizing Hes1 mRNA. Because Hes1 represses miR-9 pre-

cursor expression, Hes1 oscillation drives the oscillatory expres-

sion of the miR-9 precursor. However, mature miR-9 is very

stable, and therefore the oscillatory expression of the miR-9 pre-

cursor leads to accumulation of mature miR-9 over time. It has

been proposed that this accumulation of miR-9 terminates

Hes1 expression and initiates neuronal differentiation, suggest-

ing that Hes1 oscillation functions as a timer for the switch of

neuronal differentiation (Bonev et al., 2012). Further analyses

are required to determine whether Hes1 and Ascl1 oscillations

contribute to such a cellular clock mechanism.

Direct Reprogramming of Fibroblasts to Neurons by
Proneural bHLH Factors
Direct reprogramming of the lineage of human fibroblasts into

neurons using defined combinations of transcription factors is

a promising approach for human disease modeling and regener-

ative medicine. It was thought that the lineage identity of differ-

entiated cells is very stable and that the conversion of particular

cell types across lineage boundaries is difficult due to strict chro-

matin configurations, epigenetic DNA modifications, and rein-

forced transcription factor networks. However, it has been

shown that nuclear transfer into oocytes and cell fusion can over-

come these epigenetic barriers and induce cell-fate reprogram-

ming to pluripotency (Gurdon, 2006). Reprogramming can also

be induced artificially through the introduction of exogenous fac-

tors, usually transcription factors. For instance, overexpression

of four defined factors, Oct4, Sox2, Klf4, and c-Myc, recapitu-

lates somatic cell nuclear transfer or oocyte-based reprogram-

ming to generate iPSCs (Takahashi and Yamanaka, 2006).

Direct reprogramming of adult somatic cells into alternative

cell types has been shown for several lineages, including neu-

rons (Vierbuchen et al., 2010). This approach allows the transfor-

mation of easily available somatic cell types (typically fibroblasts)

directly into neurons without transition via a pluripotent interme-

diate. It has been reported that three neuronal transcriptional

factors, Ascl1, Brn2, and Myt1l (BAM factors), are sufficient to

convert mouse fibroblasts or hepatocytes into functional neu-

rons, termed induced neuronal (iN) cells (Vierbuchen et al.,

2010). As mentioned above, the proneural bHLH factor Ascl1 is

a crucial regulator of neurogenesis during normal development.

Ascl1 is also a central and essential component of direct reprog-

ramming of mouse and human fibroblasts to iN cells (Wapinski

et al., 2013). Notably, Ascl1 is sufficient to convert mouse fibro-

blasts into immature neurons. The addition of Brn2 and Myt1l

improves the conversion efficacy and results in fully matured
18 Neuron 82, April 2, 2014 ª2014 Elsevier Inc.
neuronal characteristics. These factors also successfully convert

astrocytes into neurons in the mouse striatum in vivo (Torper

et al., 2013). Furthermore, overexpression of the BAM factors

converts human fibroblasts into functional neurons, albeit with

lower efficacy (Pang et al., 2011), and additional introduction of

NeuroD1 (Pang et al., 2011) or Zic1 (Qiang et al., 2011) can direct

reprogramming of human fibroblasts to functional neurons with

enhanced neuronal yield and purity. Although Ascl1 is a proneu-

ral bHLH factor regulating GABAergic neurogenesis, most of the

iN cells induced by the BAM set of transcription factors show

characteristics of glutamatergic neurons, judged by mRNA or

marker protein expression profiles and electrophysiological

properties (Vierbuchen et al., 2010). Interestingly, the combina-

torial use of two proneural bHLH factors, Ascl1 and Neurog2, re-

sults in more efficacious reprogramming than the use of the BAM

factors, but iN cells induced by Ascl1 and Neurog2 exhibit mix-

tures of glutamatergic and GABAergic neurons (Ladewig et al.,

2012). Another combination of Ascl1 and the SRY-box factor

Sox2 more predominantly converts pericytes into GABAergic

neurons (Karow et al., 2012). Direct lineage reprogramming

approaches have been also applied to other specific neuronal

subtypes, such as dopaminergic neurons (Caiazzo et al., 2011;

Pfisterer et al., 2011). In the in vivo brain, the same factor can

induce different neuronal subtypes, depending on the environ-

mental condition: Neurog2 can induce GABAergic neurons in

the striatum and glutamatergic neurons in the neocortex (Grande

et al., 2013). Despite these intensive studies, the generation of iN

cells by current protocols is relatively inefficacious, and the het-

erogeneity of the induced cells and limited scalability to obtain

postmitotic neurons need to be improved.

Many of the underlying mechanisms by which these reprog-

ramming processes can be induced by just a small number of

transcriptional factors, remain obscure. To improve the efficacy

and purity of direct reprogramming to neurons, it is essential to

fully characterize the mechanisms by which reprogramming fac-

tors, including Ascl1, Neurog2, or NeuroD1 bHLH factors,

contribute to this process. Recent integrative genomic analysis

of fibroblasts-to-iN cell reprogramming using the BAM factors

revealed the ‘‘on-target pioneer factor’’ activity of Ascl1 (Wapin-

ski et al., 2013). Ascl1 can access nucleosomal DNA and imme-

diately bind to its authentic neurogenic target genes across the

fibroblast genome. Ascl1 seems to be able to bind to its target

genes and activate their expression irrespective of whether

genomic sites are freely available or are nucleosome bound.

This study also discovered the specific chromatin configurations

that favor access of Ascl1 to its target sites.

In addition to direct reprogramming to neurons, direct conver-

sion to oligodendrocyte precursor cells (OPCs) or NPCs have

been reported (Najm et al., 2013; Yang et al., 2013). In OPC re-

programming studies, Olig2 and Sox10, both of which play

essential roles in oligodendrocyte formation during normal

development, are used as the core components of reprogram-

ming factors. Many methods and protocols of direct reprogram-

ming to NPCs have been also reported, and similar to other

lineage reprogramming, transcription factors that are important

for achieving and maintaining cell-type-specific identity during

normal development function as the core component of reprog-

ramming cocktails. Sox2 is a central and essential component of
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direct reprogramming to induced NPCs, and the conversion

efficacy is promoted by combinatorial induction of other factors,

such as FoxG1, Brn2/4, Klf4, and c-Myc (Yang et al., 2011).

Most protocols for direct cellular reprogramming are currently

based on cotransduction of multiple lentiviral vectors having

constitutively active promoters. Therefore, reprogramming fac-

tors are usually overexpressed throughout all reprogramming

processes, although conditional expression using the Tet sys-

tem has also been tried. As mentioned above, the expression

and activity of many transcription factors regulating NPCs are

dynamically regulated, and these dynamic regulations are critical

for self-renewal, multipotency, and fate choice of NPCs (Im-

ayoshi et al., 2013). For example, the proneural bHLH factors

Neurog2 and Ascl1 are transiently expressed in NPCs and imma-

ture neurons, but their expression is rapidly downregulated

during neuronal maturation. Prolonged expression of these

fate-determination factors is inhibitory to maturation and even

toxic to differentiated cells. Indeed, one important problem to

be overcome is that most reprogrammed neural cells, including

iN cells, are phenotypically immature, and the proportion of fully

matured cells is very low (Yang et al., 2011). These problems

might be resolved by developing reprogramming protocols that

manipulate the mode, order, and magnitude of expression, as

well as the activity of transcription factors by recapitulating their

dynamic regulation during normal development. Furthermore,

oscillating expression of bHLH factors, including Hes, Ascl1,

Neurog2, and Olig2, in NPCs is important for forming a meta-

stable state that maintains their proliferative and multipotent

potentials. Therefore, inducing oscillatory and transiently accu-

mulative expression (e.g., by a light-inducible expression sys-

tem) may greatly improve the low conversion efficacy of direct

cellular reprogramming of neural cells.

Conclusions and Perspectives
It is now clear that bHLH factors have multiple functions that are

controlled by posttranslational modifications and expression dy-

namics. Particularly, the proneural bHLH factor Ascl1 exhibits

contradictory functions (NPC proliferation versus neuronal differ-

entiation) when the expression is oscillatory or sustained. It is

likely that Hes1 and Olig2 also have such contradictory functions

depending on their expression dynamics. One important ques-

tion here is how genes involved in cell-cycle progression are

activated by bHLH factors like Ascl1 when the expression is

oscillating but repressed by the same bHLH factors when the

expression is sustained. The presence or absence of NICD

may be one such mechanism because RBPjk-binding sites are

present in the promoters of genes involved in cell-cycle progres-

sion, but further studies are definitely required to understand the

precise mechanisms for such differential gene regulations. For

the purpose of efficacious reprogramming to generate mature

neurons or oligodendrocytes, time-controlled oscillatory and

sustained expression of bHLH factors may be important, and

recent emerging optogenetic technologies will be advantageous

to precisely recapitulate such expression patterns.

Another issue is that NPCs change their competency during

neocortical development; lower-layer neurons are generated

first, then upper-layer neurons, and lastly glial cells. It is known

that the epigenetic status, such as their DNA methylation and
histone modifications, changes over time in NPCs, leading to

different competencies, but the mechanisms of such time-

dependent changes are unknown. Oscillatory bHLH factors

might lead to gradual upregulation or downregulation of the

expression of their target genes, which might affect their epige-

netic status. In this case, oscillatory bHLH factors may function

as an internal clock in NPCs, but this possibility remains to be

addressed.

Neurogenesis occurs continuously in the adult brain and plays

an important role in higher brain functions such as learning and

memory. Reduced neurogenesis in the adult brain results in brain

dysfunctions such as memory defects and depression. Unlike

embryonic NPCs, adult NPCs are slowly dividing or quiescent

and only occasionally divide to give rise to new neurons. It was

found that the same bHLH factors (i.e., Hes1 and Ascl1) are ex-

pressed byNPCs and differentiating neurons, respectively, in the

adult brain. An emerging question is how Hes1 and Ascl1 regu-

late the maintenance of active embryonic NPCs and dormant

adult NPCs. One possible mechanism might be their different

expression dynamics in embryonic and adult NPCs. Hes1 and

Ascl1 expression oscillates in embryonic NPCs but might be

nonoscillatory in adult NPCs. Clearly, further studies are required

to test this model, and if this is the case, it will be important to

test the idea whether forced oscillatory expression of Hes1 and

Ascl1 can transform dormant NPCs into active NPCs. Further

understanding of developmental mechanisms will be helpful to

develop new methods for the effective generation of neurons,

which are applicable to regenerative medicine.
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nig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined
factors. Nature 463, 1035–1041.
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