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Development/Plasticity/Repair

Calpain-Mediated Proteolysis of Talin and FAK Regulates
Adhesion Dynamics Necessary for Axon Guidance

Patrick C. Kerstein,"> Kevin M. Patel,' and “Timothy M. Gomez'>
"Department of Neuroscience and 2Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705

Guidance of axons to their proper synaptic target sites requires spatially and temporally precise modulation of biochemical signals within
growth cones. Tonic calcium (Ca®") is an essential signal for axon guidance that mediates opposing effects on growth cone motility. The
diverse effects of Ca>* arise from the precise localization of Ca>* signals into microdomains containing specific Ca>" effectors. For
example, differences in the mechanical and chemical composition of the underlying substrata elicitlocal Ca>* signals within growth cone
filopodia that regulate axon guidance through activation of the protease calpain. However, how calpain regulates growth cone motility
remains unclear. Here, we identify the adhesion proteins talin and focal adhesion kinase (FAK) as proteolytic targets of calpain in
Xenopus laevis spinal cord neurons both in vivo and in vitro. Inhibition of calpain increases the localization of endogenous adhesion
signaling to growth cone filopodia. Using live cell microscopy and specific calpain-resistant point-mutants of talin (L432G) and FAK
(V744G), we find that calpain inhibits paxillin-based adhesion assembly through cleavage of talin and FAK, and adhesion disassembly
through cleavage of FAK. Blocking calpain cleavage of talin and FAK inhibits repulsive turning from focal uncaging of Ca*" within
filopodia. In addition, blocking calpain cleavage of talin and FAK in vivo promotes Rohon-Beard peripheral axon extension into the skin.
These data demonstrate that filopodial Ca>* signals regulate axon outgrowth and guidance through calpain regulation of adhesion
dynamics through specific cleavage of talin and FAK.
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The proper formation of neuronal networks requires accurate guidance of axons and dendrites during development by motile
structures known as growth cones. Understanding the intracellular signaling mechanisms that govern growth cone motility will
clarify how the nervous system develops and regenerates, and may identify areas of therapeutic intervention in disease or injury.
One important signal that controls growth cones is that of local Ca*>* transients, which control the rate and direction of axon
outgrowth. We demonstrate here that Ca**-dependent inhibition axon outgrowth and guidance is mediated by calpain proteol-
ysis of the adhesion proteins talin and focal adhesion kinase. Our findings provide mechanistic insight into Ca**/calpain regula-
tion of growth cone motility and axon guidance during neuronal development. j
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adhesions (Myers and Gomez, 2011). Conversely, repulsive cues,
such as Sema3A, EphrinAl, and Slit2, reduce the formation of
adhesions and often stabilize existing adhesions to inhibit axon
outgrowth or induce repulsive turning (Woo and Gomez, 20065
Bechara et al., 2008; Woo et al., 2009; Myers et al., 2012). Adhe-
sion assembly and turnover are regulated by signaling through
the kinases Src, focal adhesion kinase (FAK), and p21-associated
kinase (Robles and Gomez, 2006; Woo and Gomez, 2006; Woo et
al., 2009; Myers and Gomez, 2011; Santiago-Medina et al., 2013).
While guidance cue receptors mediate some direct control over
these kinases, it remains unclear whether additional biochemical
signals mediate control over adhesion dynamics in growth cones.

In migrating cells, ionic calcium (Ca*") is a critical biochem-
ical regulator of cell polarity and motility (Wei et al., 2009). One
primary mechanism by which Ca®* guides cell migration is
through the Ca®"-dependent cysteine protease calpain. Previous
work suggests that Ca** and calpain regulate cell migration
though the proteolytic degradation of cytoskeleton—integrin
linkages (Huttenlocher et al., 1997). Additional studies identified
talin, an integrin adaptor protein, and FAK, an adhesion signal-
ing protein, as two principal targets of calpain proteolysis, which,
when cleaved, inhibit adhesion dynamics (Franco et al., 2004;
Chan et al., 2010). Interestingly, recent studies suggest that neu-
ronal morphology and growth cone motility are also regulated by
calpain activity. In developing neurons, substratum adhesivity
regulates local filopodial Ca®" transients within growth cones
(Gomez et al., 2001) and inhibits axon outgrowth by calpain-
dependent disruption of tyrosine kinase signaling and talin local-
ization (Robles et al., 2003; Kerstein et al., 2013). While previous
studies have demonstrated a clear role for calpain activity in cell
migration and axon development, the precise targets and under-
lying mechanisms of calpain in the developing nervous system
remain elusive.

In this study, we investigated two possible targets of calpain
proteoylsis within point contact adhesions talin and FAK. While
calpain has previously been shown to cleave both talin and FAK
in HEK293 cells in vitro (Franco et al., 2004; Chan et al., 2010);
here we show that cleavage of talin and FAK occurs naturally
within the developing Xenopus spinal cord. Functionally, we
show that calpain activation reduces adhesion signaling within
growth cone filopodia and inhibits point contact adhesion dy-
namics, by preventing adhesion formation and stabilizing exist-
ing adhesions. Moreover, expressing calpain-resistant point
mutants of talin (L432G) or FAK (V744G) in growth cones mod-
ulates adhesion dynamics. Finally, inhibiting proteolysis of these
key adhesion proteins blocks calpain-dependent growth cone
turning in vitro and axon extension in vivo. While many studies
have suggested an important role for Ca®" signaling in growth
cones, few have identified downstream Ca>* effectors that regu-
late the cytoskeleton to control axon guidance. This study de-
scribes a precise mechanism for Ca®" control over adhesion
turnover to regulate axon guidance.

Materials and Methods

Expression constructs. When needed expression constructs were sub-
cloned into the Xenopus-preferred pCS2 vector (provided by Dave
Turner, University of Michigan, Ann Arbor, MI). Human calpainl
H272A was provided by S. Kulkarni (Cleveland Clinic Foundation,
Cleveland, OH) and was subcloned into pCS2 C-GFP (Kulkarni et al.,
1999). Chick paxillin-eGFP (plasmid #15233, Addgene; Laukaitis et al.,
2001) was provided by A.F. Horwitz (University of Virginia, Charlottes-
ville, VA) and subcloned into pCS2. Chick paxillin-tdTomato (plasmid
#58123, Addgene) was provided by M. Davidson (National Magnetic
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Field Laboratory, Florida State University, Tallahassee, FL). Mouse
eGFP-talin 1432G (plasmid #26725, Addgene; Franco et al., 2004),
eGFP-FAK V744G, and TagRFP-FAK V744G (Chan et al., 2010) were
provided by A. Huttenlocher (University of Wisconsin, Madison, WI).
Male and female Xenopus laevis embryos (Nasco) were obtained and
staged as described previously (Nieuwkoop and Faber, 1994; Gémez et
al., 2003). For experiments requiring plasmid expression, two to three
blastomeres of eight-cell-stage embryos were injected with 5075 pg of
DNA constructs. For in vivo skin prep experiments, single dark blastom-
eres of eight-cell-stage embryos were injected. Embryos that appeared
grossly normal 24 h postfertilization (hpf) were used to make spinal cord
explant cultures. Neural tube explant cultures containing neurons were
prepared in a modified Ringer’s solution, as described previously (Go-
mez et al., 2003). Aminoglycoside antibiotics (AGAs), gentamicin and
streptomycin, are present in our culture media at a concentration of 100
uM each for antimicrobial purposes. Explants were plated onto acid-
washed coverslips coated with 25 ug/ml laminin (LN; Sigma-Aldrich).
Cultures were imaged or fixed 16—24 h after plating.

Image acquisition and analysis. For fixed fluorescence microscopy, im-
ages were acquired using a 60</1.45 numerical aperture (NA) ora 10X/
0.3 NA objective lens using a Olympus Fluoview 500 laser-scanning
confocal system mounted on an AX-70 upright microscope for in vitro
and in vivo experiments, respectively. Olympus Fluoview software was
used for image acquisition (RRID: SRC_014215). On the confocal sys-
tem, fixed samples used for immunocytochemistry experiments were
imaged with a 2.5X zoom (pixel size, 165 nm). Measurements of filopo-
dia immunofluorescence intensity of talin, vinculin, pY397 FAK, pY99,
and pY188 paxillin were made by first selecting the perimeter of growth
cones from thresholded filamentous actin (F-actin)-labeled images
based on intensity to exclude background. Furthermore, the centers of
growth cones were removed manually from the selection mask to measure
filopodia using only FIJT open-source software (RRID: SRC_002285). These
user-defined regions were then used to measure the average pixel inten-
sity of immunolabeling within nonthresholded growth cone filopodia.
For display purposes, some images were pseudocolored using FIJI
lookup tables. For live cell adhesion fluorescence microscopy, images
were captured using a 100X/1.5 NA total internal reflection fluorescence
(TIRF) objective lens on a Nikon TIRF microscope with a CoolSNAP
HQ2 CCD camera (Photometrics). Nikon MetaMorph software was
used for image acquisition (RRID: SRC_002368). For all live cell adhe-
sion experiments, explant cultures were sealed within perfusion cham-
bers, as described previously (Gomez et al., 2003), to allow the rapid
exchange of solutions. Time-lapse images of paxillin-GFP or paxillin-
tdTomato puncta were captured at 5 s intervals for 10 min before and
after the addition of 1 um calpastatin peptide inhibitor (CPI; Calbio-
chem) or the removal of AGAs. Only growth cones that did not collapse
before or after pharmacological treatment were analyzed. Images were
analyzed off-line using FIJI. Point contacts were identified as discrete
puncta containing paxillin-GFP or paxillin-tdTomato that were at least
two times brighter than the surrounding background and remained sta-
tionary for at least 30 s (Woo and Gomez, 2006). For all figures, images
were processed in Photoshop (Adobe Systems; RRID: SCR_014199) as
follows: brightness levels were adjusted, an unsharp mask routine was
applied to improve edge detection, and the images were converted to an
8 bit depth and cropped.

Dynamic adhesion maps. Dynamic adhesion map images were pre-
pared from image stacks using FIJI, as detailed previously (Santiago-
Medinaetal., 2011). Briefly, an image stabilization algorithm was applied
if necessary, and to improve edge detection an unsharp mask routine was
applied, followed by thresholding to highlight the puncta of interest.
Next, an 8 bit binary filter was applied to equalize point contact intensi-
ties. Binary images were dilated by 1 pixel to improve the detection of
small point contact adhesions. Image stacks were then converted to 16 bit
and summed so that intensity provides a measure of pixel lifetime. Final
images were contrast enhanced and pseudocolored.

Caged Ca’" experiments. For focal Ca®" uncaging experiments, a
100X/1.40 NA objection lens was used on an Olympus Fluoview 500
laser-scanning confocal system mounted on an AX-70 upright micro-
scope. Neurons on LN were loaded for 45 min with 4 um NP-EGTA AM
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(Invitrogen) and photoactivated with 360 = 25 nm light from a mercury
lamp, as described previously (Robles et al., 2003). Growth cone filopo-
dialoaded with NP-EGTA and Fluo-4 (Invitrogen) were used to calibrate
the UV pulse conditions to match the amplitude and kinetics of natural
filopodial Ca?" transients, as described previously (Gomez et al., 2001).
During turning assays, the leading edge of motile growth cones was po-
sitioned 5 wm from the region of UV light. Differential interference
contrast or GFP fluorescence images were acquired every 15 s. Only
growth cones that advanced 10 wm during the imaging time period were
used for off-line analysis of axon turning angles using FIJT software.

In vivo skin preparation. Rohon—-Beard (RB) peripheral axons were
visualized in stage 25-26 embryos by isolating the dorsal skin by remov-
ing the spinal cord and lateral somites. The skin whole-mounts were
incubated with 1:500 anti-GFP (Abcam; RRID: AB_305564) and 1:500
anti-HNK-1 antibody (NCAM; Sigma-Aldrich; RRID: AB_1078474) to
label RB axons. Multiple confocal fields of view of a single preparation
were stitched together using the Mosaic] plugin within the FIJI software
(Thévenaz and Unser, 2007). For analysis of RB peripheral axon out-
growth, the length of the longest RB axon was measured within 100 um
segments and compared between the injected and uninfected sides of the
skin, as described previously (Robles and Gomez, 2006; Moon and
Gomez, 2010).

Reverse transcription-PCR. For reverse transcription (RT)-PCR exper-
iments, cDNA libraries were made from mRNA isolated from stage 22
Xenopus spinal cords using a TRIzol (Invitrogen)-based extraction pro-
tocol, and reverse transcription was performed using ImProm-II Reverse
Transcription System (Promega). Primers for calpainl, calpain2,
calpainSS1, and BII-tubulin were designed from X. laevis-specific nRNA
sequences obtained from Xenbase and National Center for Biotechnol-
ogy Information. PCR experiments were completed using DreamTaq
Polymerase (Thermo Scientific).

Immunocytochemistry and Western blots. For immunocytochemistry
experiments, spinal neuron cultures were fixed in 4% paraformaldehyde
in Krebs sucrose fixative (Dent and Meiri, 1992), permeabilized with
0.1% Triton X-100, and blocked in 1.0% fish gelatin in calcium-—
magnesium-free PBS for 1 h at room temperature. Primary antibodies
were used at the following dilutions in blocking solution: 1:500 talin
(Thermo Fisher; RRID: AB_2204008), 1:500 vinculin (Sigma-Aldrich;
RRID: AB_477629), 1:500 pY397 FAK (Thermo Fisher; RRID:
AB_2533701), 1:500 pY99 (Santa Cruz Biotechnology; RRID:
AB_628123), and 1:500 phospho-Y118 paxillin (Thermo Fisher;
RRID: AB_2533733) antibodies. Alexa Fluor-conjugated secondary an-
tibodies were purchased from Invitrogen and used at 1:250 in blocking
solution (RRID: AB_141514, RRID: AB_143165, RRID: AB_141370,
RRID: AB_143051). Included with secondary antibodies was Alexa Fluor
546 and Alexa Fluor 647 phalloidin (1:100; Invitrogen, RRID: AB-
_2572408, RRID: AB_2620155) to label F-actin. For Western blots, talin,
FAK, and BI-II tubulin were blotted from total protein extracts from
stage 22-23 embryo spinal cords that were treated with either 1 um CPI
or 0.1% DMSO for 30 min before protein isolation. Spinal cord lysates
were run on a Novex NuPAGE SDS-PAGE gel system (Invitrogen). Talin
(1:1000; Thermo Fisher; RRID: AB_2204008), FAK (1:500; Cell Signaling
Technology; RRID: AB_10694098), and BI-II tubulin (1:1000; Sigma;
RRID: AB_261795) primary antibodies were used for immunoblotting
and were visualized with horseradish peroxidase-conjugated secondary
antibodies (1:5000; Jackson ImmunoResearch; RRID: AB_10015289,
RRID: AB_2313597). The blots were developed and visualized using en-
hanced chemiluminescence (Thermo Scientific).

t-BOC-1-leucyl-L-methionine amide proteolysis assay. Xenopus neu-
rons were incubated with 10 uM 7-amino-4-chloro-methylcoumarin,
t-BOC-1-leucyl-L-methionine amide (t-BOC; catalog #A6520, Invitro-
gen) in 0.01% pluronic acid/0.1% DMSO in MR. Coumarin fluorescence
was monitored using a 40X oil-immersion objective on an inverted Nikon
Eclipse TE2000-E microscope equipped with a Prior Lumen 200PRO halide
lamp filtered through 350 = 25 nm excitation and 460 * 25 nm emission
filters (Chroma Technology). Coumarin fluorescence intensity within
growth cones was captured at 0 and 10 min after t-BOC addition.

Statistical analysis. For all datasets, the variance is reported as =SEM.
Each dataset was first tested for normality. Analysis between two groups
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was completed by using an unpaired Student’s ¢ test (parametric) or a
Mann-Whitney U test (nonparametric). For analysis among more
than two groups, either a one-way ANOVA with Tukey’s multiple-
comparison test (parametric) or a Kruskal-Wallis with Dunn’s multiple-
comparison test (nonparametric) was used. GraphPad Prism Software
(RRID: SRC_002798) was used for statistical significance tests.

Results

Calpain-mediated proteolysis of talin and FAK in the
developing spinal cord and in growth cones

To investigate the targets of calpain-mediated proteolysis in de-
veloping neurons, we first confirmed the presence of conven-
tional calpain transcripts in developing Xenopus spinal cords
expressed by RT-PCR from stage 22 spinal cord mRNA. We
found that the proteolytic subunits calpainl (u-calpain) and cal-
pain2 (m-calpain), and the regulatory subunit calpain small sub-
unit 1 (calpainSS1, calpain4) are expressed at this stage of robust
axon extension (Fig. 1a). Next, we took a candidate approach by
selecting likely calpain targets identified in migrating non-
neuronal cells. The migration of fibroblasts is disrupted by per-
turbations in calpain function through proteolysis and
degradation of adhesion and cytoskeletal components (Hutten-
locher et al., 1997). Two of the main targets within adhesion
complexes are the scaffolding protein talin and the tyrosine ki-
nase FAK (Franco et al., 2004; Chan et al., 2010). In previous
studies, calpain-mediated proteolysis of talin and FAK was ana-
lyzed in human cell lines. Therefore, we first examined whether
the calpain cleavage sites of talin and FAK were conserved in X.
laevis and then tested whether cleavage of these proteins occurs in
primary neurons (Fig. 1b,c). To assess whether talin and FAK
were cleaved in the developing spinal cord, we collected stage 22
spinal cord lysates. At this stage, neurons are actively extending
axons in the spinal cord (Robles and Gomez, 2006; Moon and
Gomez, 2010). By Western blot, talin appears as a 230 kDa full-
length band, a 190 kDa rod fragment band, and a 120 kDa
Vinculin-Actin-Dimerization domain fragment (Fig. 1d). All
bands appear as doublets, since this antibody recognizes both
isoforms of talin. Importantly, we know these talin fragments are
due to calpain cleavage since the inhibition of calpain by incubat-
ing the spinal cords for 30 min in 1 uM CPI reduces talin cleavage
by ~70% relative to the DMSO control (Fig. 1d). Western blots
labeled for FAK show a 116 kDa full-length band and an 80 kDa
cleaved fragment, which are reduced by ~60% relative to the
control after inhibition of calpain (Fig. le). These data demon-
strate that talin and FAK are cleaved by calpain in developing
spinal cord lysates, suggesting a possible role for calpain during
axon extension and pathfinding.

While analysis of spinal cord lysates demonstrates calpain
cleavage of proteins in native conditions, they do not prove pro-
teolysis occurs within growth cones. Therefore, we used immu-
nocytochemistry for key adhesion proteins and phosphorylation
sites to determine whether changes in calpain activity modulated
adhesion protein localization and signaling in growth cones. We
first assessed localization of three different adhesion proteins and
phosphorylation sites that have previously been shown to localize
to growth cone filopodia, as follows: talin; an active form of FAK
(pY397 FAK); and a point contact adhesion marker pY118 pax-
illin (Robles and Gomez, 2006; Woo and Gomez, 2006; Kerstein
etal., 2013; Fig. 2a,d,g). We quantified the immunofluorescence
signal intensity within individual filopodia instead of entire
growth cones, as dynamic Ca**, calpain, and adhesion signals are
most robust in filopodia (Robles et al., 2003; Kerstein et al., 2013).
First, we inhibited calpain activity with 1 um CPI for 30 min
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Talinand FAK are cleaved by calpain within the embryonic spinal cord. a, RT-PCR amplification of mRNA transcripts of calpain1 (262 bp), calpain2 (262 bp), calpainSS1(299 bp), and SlI

tubulin (251 bp) from stage 22 Xenapus spinal cords. b, ¢, Schematic domain organization of talin (b) and FAK (c) showing approximate location of protein interaction motifs and calpain cleavage
sites. Below are human and Xenapus protein sequences of the calpain cleavage sites, which are highly conserved between species. d, Inmunoblots for talin from Xenopus neural tube lysates
incubated in control media or media containing a calpain protease inhibitor (1 m CPI) for 30 min. The full-length talin band is at 230 kDa (arrow), and the cleaved talin is at 190 kDa (arrowhead).
An additional calpain-dependent fragment (Vinculin-Actin-Dimerization domain fragment) was found at 120 kDa (not quantified). Note that all bands appear as doublets since the antibody
recognizes both talin isoforms. The average talin cleavage in control and CP! (right) was quantified from the large isoform band intensities (190 kDa band/230 kDa) from multiple blots (n = 7). e,
Immunoblots for FAK from Xenapus neural tube lysates incubated in control media or media containing a calpain protease inhibitor (1 m CPI) for 30 min. The full-length FAK band is at 116 kDa
(arrow), and cleaved FAK is at 80 kDa (arrowhead). The average FAK cleavage in control and CPI (right) was quantified (80 kDa band/116 kDa) from multiple blots (n = 6). *p << 0.05, Mann—Whitney

Utest.

before fixation and found that talin, pY397 FAK, and pY118 pax-
illin all increased in fluorescence intensity within filopodia (Fig.
2b,e,h,j). Next, we acutely activated calpain in a Ca**-dependent
manner by removing AGAs from the culture media 30 min before
fixation. Previous studies have shown that AGAs, which are com-
mon cell culture antibiotics, also inhibit mechanosensitive ion
channels (Kerstein et al., 2013). Furthermore, acute removal of
AGAs elicits filopodial Ca** transients in a robust and reproduc-
ible manner. Removal of AGAs acts on growth cone motility
through the disinhibition of mechanosensitive transient receptor
potential canonical member 1 (TRPCI1) channels that selectively
and directly activate calpain through local Ca*" influx (Kerstein
etal., 2013). When we activated calpain through acute removal of
AGAs for 30 min before fixation, we found a reduction in talin,

pY397 FAK, and pY118 paxillin fluorescence intensity in growth
cone filopodia (Fig. 2¢,fi). In addition, we found a similar
calpain-dependent trend for the fluorescent intensity of other
adhesions signaling markers, such as the talin binding protein
vinculin and total tyrosine phosphorylation (Fig. 2j), which we
have previously shown to be highly localized to point contact
adhesions (Robles et al., 2005).

To support our pharmacological manipulations, we expressed
a catalytically inactive calpainl (capnl-H272A) mutant in spinal
neurons. Capnl-H272A has previously been shown to act as a
dominant negative, as it competes with endogenous calpainl and
calpain2 for binding to the regulatory and activating subunit,
calpain small subunit 1 (Capnsl, Capn4; Kulkarni et al., 1999).
Importantly, capnl-H272A expression in Xenopus spinal cord
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k, Quantification of filopodial fluorescence intensity of talin, FAK Y397, and PXN Y118 in growth cones expressing GFP-tagged dominant-negative calpain1 (H272A) normalized to cocultured
wild-type neurons. Scale bar, 5 wm. n > 60 growth cones and n > 3 cultures for all conditions. *p << 0.05, Mann—Whitney U test.

neurons shows that it localizes to neuronal growth cones and
reduces protease activity (data not shown). Growth cones ex-
pressing capnl-H272A exhibited a significantly higher fluores-
cence intensity of talin and pY118 paxillin in filopodia, consistent
with pharmacological inhibition of calpain (Fig. 2k). However,
while pY397 FAK showed a similar increase in filopodial localiza-
tion, this increase was not statistically significant (Fig. 2k). These
data suggest that calpain cleaves adhesion proteins within the
developing spinal cord and within growth cone filopodia to
reduce adhesion signaling, and therefore may regulate specific

aspects of point contact adhesion dynamics in motile growth
cones.

Calpain activity regulates point contact adhesion dynamics in
neuronal growth cones

We precisely measure point contact assembly frequency and du-
ration from live paxillin-GFP-expressing growth cones imaged at
high temporal and spatial resolutions with TIRF microscopy
(Woo etal., 2009; Myers and Gomez, 2011). Using this approach,
we previously correlated the rate of point contact turnover with
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(alpain activity regulates adhesion dynamics in filopodia. , ¢, Inverted contrast TIRF images of growth cones expressing paxillin-GFP displayed at 1 min intervals, over 10 min before

(a) and after (c) the addition of CPI (calpain inhibition). b, d, Adhesion lifetime heat maps showing adhesion dynamics from the time points in @and ¢, respectively. The inset pie charts demonstrate
the proportion adhesions with the lifetime 0—1 min (blue), 1-2 min (green), and 2—3 min (red). Note that the inhibition of calpain reduces the number of stable adhesions (arrows) and increases
the number new adhesions (arrowheads). e, g, Inverted contrast TIRF images of growth cones expressing paxillin-GFP displayed at 1 min intervals (e) before and (g) after the removal of AGAs
(calpain activation). f, h, Adhesion lifetime heat maps showing adhesion dynamics from the time points in e and g, respectively. Note that Ca*-dependent activation of calpain reduces the
formation of new adhesions (arrowheads) and stabilizes existing adhesions (arrows). i, j, Quantification of adhesion assembly () and duration (f) for calpain inhibition (+CPI), activation (—AGAs),
or the combined removal of AGAs with the addition of CPI. Scale bar, 5 m. n > 100 adhesions and n > 12 growth cones for each condition. *p << 0.05, Mann—Whitney U test.

the rate of axon outgrowth (Woo and Gomez, 2006; Woo et al.,
2009; Myers and Gomez, 2011). Since calpain inhibition in-
creases axon outgrowth (Robles et al., 2003; Kerstein et al., 2013)
and increases adhesion signaling within filopodia (Fig. 2), we
hypothesized that calpain inhibition would promote point con-
tact turnover. To test this hypothesis, we acquired time-lapse
images of paxillin-GFP-expressing growth cones 10 min before

and after applying 1 um CPI (Fig. 3a,c). We found that the inhi-
bition of calpain caused little or no increase (26.2%; not signifi-
cant) in point contact assembly (Fig. 3a—d,i), but did cause a
33.1% reduction in point contact duration (Fig. 3a—d,j). Con-
versely, when we acutely activated calpain with the removal of
AGAs, we found a 40.0% reduction in point contact assembly and
a 19.4% increase in point contact adhesion duration (Fig. 3e—j).
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(alpainregulates adhesion dynamics through the cleavage of talin and FAK. a— h, Inverted contrast TIRF images of growth cones expressing paxillin-GFP or paxillin-tdTomato displayed

every 1 min over a 3 min period in wild-type- (a, b), dominant-negative calpain (H272A; , d), calpain-resistant talin- (L432G; e, f), or calpain-resistant FAK (V744G; g, h)-expressing neurons.
Arrowheads denote new adhesions formed. b, d, f, h, Adhesion lifetime heat maps exhibit adhesion dynamics from the corresponding time points. Arrows represent the stable adhesions that have
a lifetime between 2 and 3 min. The inset pie charts demonstrate the proportion of adhesions with lifetimes of 0—1 min (blue), 1-2 min (green), and 2—3 min (red). i, j, Quantification of adhesion
formation (f) and duration (j) for wild-type-, capn1-H272A-, talin-WT-, talin-L432G-, FAK-WT-, and FAK-V744G-expressing growth cones. Statistical comparisons were made between wild-type-
and capn1-H272A-, talin-WT- and talin-L432G-, and FAK-WT- and FAK-V744G-expressing growth cones. Scale bar, 5 um. n > 100 adhesions and n > 11 growth cones for each condition.

*p << 0.05, Mann—Whitney U test or Student’s t test.

Consistent with the activation of calpain, the effects of AGA
removal were suppressed or reversed in the presence of CPI
(Fig. 3i,5).

To validate our pharmacological findings, we coexpressed
dominant-negative mCherry-capnl-H272A and paxillin-GFP in
spinal neurons to assess growth cone adhesion dynamics during
chronic calpain inhibition (Fig. 4¢,d). In growth cones expressing
capnl-H272A, we observed a 42.7% increase in adhesion assem-

bly and a 14.4% decrease in adhesion duration compared with
wild-type growth cones (Fig. 4a—d,i,j), which are similar to ob-
servations with acute application of CPI (Fig. 3i,). In addition,
the activation of filopodial Ca*™ transients by AGA removal had
no effect on adhesion dynamics in growth cones expressing
dominant-negative calpainl (Fig. 5). These data suggest that the
inhibition of calpain activity increases adhesion cycling through
an increase in point contact assembly and a decrease in adhesion
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Figure5. Theeffects offilopodial Ca™ transients on adhesion dynamics are blocked by inhibition of calpain activity and cleavage of talin and FAK. a, b, Change in growth cone adhesion assembly
rate (a) and adhesion duration (b) after disinhibition of filopodial Ca* transients by removing AGAs in wild-type-, capn1-H272A-, talin-WT-, talin-L432G-, FAK-WT-, and FAK-V744G-expressing
growth cones in vitro. Paired measurements were made from the same growth cones before and after the removal of AGAs, and data were normalized to the rate of adhesion assembly and duration
innormal culture conditions. Statistical comparisons were made within the same growth cones before and after the removal of AGAs within each group. For each group, n > 110individual adhesions

and n > 10 growth cones. *p << 0.05, Mann—Whitney U test or Student’s t test.

duration. Furthermore, we concluded that calpain activity inhib-
its integrin-dependent adhesion signaling and point contact cy-
cling. While previous studies have linked calpain and Src tyrosine
kinase signaling in the growth cones (Robles et al., 2003), this is
the first study to demonstrate that calpain regulates specific as-
pects of point contact adhesion dynamics in growth cones.

Calpain differentially regulates adhesion assembly

and disassembly through proteolysis of talin and FAK

To determine how calpain-targeted proteolysis of talin and FAK
(Fig. 1) regulates adhesion dynamics, we expressed mutant forms
of talin (L432G) and FAK (V744G) that are resistant to calpain
proteolysis. These mutants were used to assess the specific effects
of the proteolysis of talin and FAK on adhesion dynamics. Both
talin and FAK mutants have previously been shown to resist cal-
pain proteolysis, while maintaining their function and protein—
protein interactions within the adhesion complex (Franco et al.,
2004; Chan et al., 2010). In addition, mutant talin and FAK pro-
teins correctly localize to point contact adhesions when expressed
in neuronal growth cones (data not shown). We hypothesized
that the expression of noncleavable talin would increase adhesion
assembly, as talin is important for inside-out activation of integ-
rin receptors (Tadokoro et al., 2003). To test this hypothesis, we
coexpressed GFP-talin-1432G with paxillin-tdTomato to analyze
the changes in adhesions dynamics when calpain was unable to
cleave talin. As predicted, the expression of talin-L432G signifi-
cantly increased point contact adhesion assembly by 23.6% com-
pared with growth cones expressing wild-type talin (Fig. 4e,fi).
Next, we hypothesized that expressing the calpain-resistant FAK
mutant would decrease point contact duration, as our laboratory
previously showed that FAK promotes point contact turnover
(Myers and Gomez, 2011). Interestingly, we found that the ex-
pression of FAK-V744G increased the frequency of point contact
assembly by 30.2% and decreased point contact duration by
40.0% compared with growth cones expressing wild-type FAK
(Fig. 4g—j). Finally, we found that, unlike the expression of
wild-type proteins, the expression of either talin-L432G or FAK-
V744G blocked the effects of filopodial Ca** transients (—AGAs) on
point contact adhesion dynamics (Fig. 5a,b). Altogether, these
data suggest that Ca>"-activated calpain suppresses adhesion as-

sembly through cleavage of both talin and FAK, and stabilizes
adhesions through the cleavage of FAK.

Filopodial Ca** transients guide neuronal growth cones by
calpain-mediated proteolysis of talin and FAK

We have previously shown that filopodial Ca** transients gener-
ated on one side of growth cones are sufficient to induce calpain-
dependent repulsive turning (Gomez et al., 2001; Robles et al.,
2003). Here we wanted to determine whether calpain-mediated
proteolysis of talin and FAK are also required for Ca**-
dependent growth cone turning. To address this question, we
measured the turning responses of growth cones expressing GFP,
GFP-capnl1-H272A, GFP-talin-L432G, or GFP-FAK-V744G to
focal release of caged Ca* ™. After 45 min, wild-type (NP-EGTA-
loaded) growth cones turn an average 21.7 % 3.4° compared with
unloaded control growth cones exposed to the same UV light
pulses, which turn an average of 12.9 = 2.7° (Fig. 6a,e,f). These
results are consistent with previous observations of axon turning
angles by caged Ca’" release in growth cone filopodia (Gomez et
al., 2001). Moreover, the response to caged Ca?" release was
abolished in growth cones expressing dominant-negative capnl-
H272A (Fig. 6e,f), which is consistent with previous findings
using pharmacological inhibition of calpain (Robles et al., 2003).
Interestingly, repulsive turning was also abolished in growth
cones expressing either calpain-resistant talin-L432G (Fig. 6¢,e,f)
or calpain-resistant FAK-V744G (Fig. 6d—f). The expression of
either mutant protein had no significant effect on the rate of axon
outgrowth (Fig. 6¢). These results demonstrate that preventing
calpain-mediated proteolysis of just one adhesion protein is suf-
ficient to prevent repulsive turning in Ca**-dependent manner.
This suggests that repulsive axon guidance cues may also signal
through this Ca”*/calpain to elicit their effects in vivo.

Calpain-mediated proteolysis regulates Rohon-Beard
peripheral axon extension in vivo

To assess whether calpain-mediated cleavage of adhesion pro-
teins regulates axon outgrowth in vivo, we used an RB skin prep-
aration to quantify the growth and guidance of sensory neuron
peripheral axons in Xenopus embryos. We chose these axons for
in vivo analysis because they extend and branch along the basal
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Kruskal—-Wallis with Dunn’s multiple-comparison test.

lamina of the skin and therefore most closely mimic our in vitro
experimental conditions using a laminin substratum (Robles and
Gomez, 2006; Wang et al., 2013). For these studies, we coinjected
c¢DNA-encoding mutant constructs and GFP mRNA into one
ventral blastomere at the eight-cell blastula stage (Fig. 7a; Robles
and Gomez, 2006). Based on developmental fate maps, this drives
expression into one side of the dorsal spinal cord and the skin
(Fig. 7b). After 24 h, RB peripheral axons were visualized with
HNK-1 antibody labeling in an open-book skin preparation. This
technique allowed us to compare differences between the injected
side and the uninjected control side of embryos (Fig. 7c—¢). When
GFP alone was expressed on one side of embryos, we observed no
difference in axon extension between the injected and control
sides (Fig. 7¢,h). In contrast, we found that peripheral axons ex-
pressing GFP-capnl-H272A were significantly longer on the
injected side versus the control side (Fig. 7f,h). Interestingly, neither
expression of GFP-talin-L432G (Fig. 7e) nor GFP-FAK-V744G
alone (Fig. 7f) were sufficient to phenocopy the expression of
dominant-negative calpainl. However, when GFP-talin-1L432G

and TagRFP-FAK-V744G were expressed together on the same
side of the embryo, we observed a similar enhancement of axon
outgrowth phenotype compared with the calpainl mutant em-
bryos (Fig. 7g,h). Therefore, disruption of a single calpain sub-
strate can affect adhesion dynamics and in vitro turning assays,
but the cleavage of multiple substrates is required to affect more
complex cell behaviors, such as axon outgrowth in vivo. In addi-
tion to enhanced axon lengths, we observed an increase in RB
axon branching in embryos expressing dominant-negative cal-
pain. However, we did not observe this phenotype in embryos
expressing the talin and/or FAK mutants (Fig. 77). This suggests
that calpain suppresses axon branching through proteolysis of a
different target, such as the actin binding protein cortactin
(Mingorance-Le Meur and O’Connor, 2009).

Discussion

The goal of this study was to determine how Ca** signals direct
calpain cleavage in filopodia to control growth cone motility.
Previous work using fibroblast cell lines demonstrated that local
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Ca** and calpain signals regulate cell migration through the deg-
radation of actin and integrin linkages (Huttenlocher et al., 1997;
Franco et al., 2004; Chan et al., 2010). In agreement with these
findings, we identified the adhesion proteins talin and FAK as
targets of calpain proteolysis in cells isolated from the developing
spinal cord (Fig. 1). We further show that calpain regulates the
localization and activity of talin, FAK, and other components of
integrin-based point contact adhesions of growth cones (Fig. 2).
Interestingly, we find that calpain differentially regulates point
contact adhesion assembly and disassembly through the cleavage
of talin and FAK, respectively (Figs. 3,4, 5). Further, we show that
the cleavage of talin and FAK in growth cones is necessary for
Ca*"-dependent repulsive turning (Fig. 6). These data suggest
that Ca®"/calpain activity mediates repulsive turning through

asymmetrical adhesion turnover by cleaving of talin and FAK
(Fig. 8). Finally, we demonstrated that proper regulation of cal-
pain function and cleavage of talin and FAK is required for nor-
mal extension of RB peripheral axons into the developing skin
(Fig. 7). These data suggest that calpain has important roles in
integrin-dependent adhesion, growth cone motility, and axon
guidance in vitro and in vivo.

An intriguing result from this study is the differential effects of
calpain-resistant talin (L432G) and FAK (V744G) on growth
cone adhesion dynamics. We find that under basal conditions,
calpain-resistant FAK affected both adhesion formation and du-
ration in growth cones, but calpain-resistant talin affected only
adhesion formation (Fig. 41,j). While calpain-resistant FAK and
talin differentially affect adhesions, each is sufficient to block
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formation and turnover, and tips the balance between formation and duration that results in Ca > -dependent repulsive turning.

repulsive turning to local Ca®" uncaging. One explanation for
this is that, under stimulated conditions, calpain-resistant talin
blocks Ca**-dependent changes on both adhesion formation
and duration, which is consistent with our observations after
global activation of calpain by AGA removal (Figs. 5a,b, 8). Talin
may affect adhesion duration indirectly by binding FAK, which
may be disrupted by calpain only under stimulated conditions.
However, it is important to note that due to the limitations of
imaging the precise spatiotemporal dynamics of growth cone ad-
hesions, we could be missing some subtle changes in growth cone
adhesion dynamics induced by the expression of talin and FAK
mutants. For example, better temporal resolution would allow us
to more accurately calculate adhesion kinetics, such as rate con-
stants for assembly and disassembly of adhesions. Future ad-
vances in imaging technologies and fluorophores will likely allow
us to determine such adhesion parameters and clarify our work-
ing model for growth cone adhesion dynamics.

A major open cell biological question is whether calpain pro-
teolysis leads to degradation or modulation of specific target pro-
teins. Unlike degradative proteases, analysis of >100 substrate
target sequences of calpain proteolysis did not reveal a clear con-
sensus sequence (Tompa et al., 2004). This led to the hypothesis
that calpain proteolysis is based on secondary and tertiary struc-
tures of target proteins, as calpain commonly cleaves proteins
between modulatory domains, leading many to suggest that cal-
pain modulates protein function rather than degrading proteins
(Franco and Huttenlocher, 2005). For example, the head domain
of talin is important for the activation of integrins during adhe-
sion assembly (Calderwood et al., 1999), and studies using cell-
free in vitro assays show that the talin head domain alone has a
sixfold higher binding affinity for B-integrins compared with
full-length talin (Yan et al., 2001). Furthermore, structural evi-
dence suggests that full-length talin auto-inhibits the talin head
domain, preventing binding and activation of integrins (Goksoy
etal., 2008; Saltel et al., 2009). Therefore, it is possible that calpain
proteolysis activates talin function by relieving talin auto-inhibition.
Recent evidence in non-neuronal cells suggests that the talin head
proteolytic fragment is essential for adhesion assembly, cell spreading,
and membrane protrusion. However, in basal cell conditions the
talin head fragment is rapidly ubiquitinated and degraded by the
E3 ubiquitin ligase Smurfl, and only during specific cell-
signaling events is Smurf1 blocked from ubiquitinating talin pro-
teolytic fragments (Huang et al., 2009). A similar mechanism

may occur in developing axons, as Smurfl activity is modulated
in the presence of extracellular axon guidance cues, such as BDNF
(Cheng et al., 2011).

Although less well studied, calpain proteolysis of FAK may
also produce functional protein fragments. Calpain cleaves FAK
between the kinase and focal adhesion targeting (FAT) domain,
leaving the kinase domain functional but without proper local-
ization (Fig. 1¢). The FAT domain fragment resembles the endog-
enous dominant-negative version of FAK known as FAK-related
nonkinase (FRNK; Chan et al., 2010). Interestingly, overexpres-
sion of FRNK reduces point contact adhesion cycling in neuronal
growth cones (Myers and Gomez, 2011), prevents the response to
attractive guidance cues (Li et al., 2004), and modulates both
axon extension and branching in vivo (Rico et al., 2004; Robles
and Gomez, 2006). In contrast, the expression of calpain-
resistant talin and FAK did not prevent axon extension, rather it
enhanced outgrowth in vivo, which is consistent with the notion
that calpain normally suppresses motility by the generation of
inhibitory protein fragments (Fig. 7e-h). Importantly, our bio-
chemical analyses suggest that the proteolytic fragments of talin
and FAK are rapidly degraded, as they are almost completely lost
after 30 min of calpain inhibition (Fig. 1d,e). The regulation of
fragment degradation may provide another level of control of
growth cone motility downstream of guidance cues.

Another open question is how calpainl and calpain2 function
differs in neuronal growth cones. The experiments in this study
do not distinguish between the two subunits, but these key cal-
pain family members may have different or even opposite effects
on neuronal signaling, as described previously for synaptic plas-
ticity (for review, see Baudry and Bi, 2016). Distinct functional
effects of specific calpain subunits may result from differences in
their proteolytic targets. In addition, calpainl and calpain2 are
activated by low (5-10 um) and high (0.2-0.5 mM) concentra-
tions of Ca*", respectively. Therefore, it is possible that calpainl
may mediate the cleavage of talin and FAK under basal condi-
tions (low Ca>* activity), while calpain2 may only be active un-
der stimulated conditions (high Ca** activity). These possible
differences between upstream and downstream calpain pathways
suggest that calpain signaling in growth cones is more complex
than previously described, which provides interesting open ques-
tions for future studies.

Many axon guidance cues may signal through the modulation
of calpain activity to regulate growth cone motility and axon
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guidance. Some repulsive guidance cues, such as Slit-2 and
myelin-associated glycoprotein, affect motility by activating
Ca’* influx through plasma membrane ion channels (Henley et
al., 2004; Guan et al., 2007), which may activate calpain down-
stream. Interestingly, our previous work suggests that Slit mod-
ulates point contact adhesion dynamics in a manner that is very
similar to that of calpain activation (Fig. 2; Myers et al., 2012). In
addition, while Semaphorin 3A (Sema3A) is considered a Ca**-
independent repulsive axon guidance cue (Song et al., 1998), it
does activate calpain through phosphorylation by MAPK and not
Ca?" influx (Qin et al., 2010). Attractive axon guidance cues may
also signal through calpain by suppressing rather than promoting
calpain activity. For example, recent work demonstrated that
precrossing spinal commissural interneurons (Cls) exhibit high
calpain activity, which is reduced in response to the midline
GDNF in postcrossing Cls (Nawabi et al., 2010; Charoy et al.,
2012). At the midline, calpain is thought to act on guidance cue
receptors to modulate responsiveness to particular environmen-
tal cues (Charoy et al., 2012). In addition, calpain proteolysis of
adhesion proteins may be modulated in response to growth-
promoting guidance cues. For example, the inhibition of calpain
leads to similar changes in point contact adhesion cycling, as has
been observed in response to BDNF (Myers and Gomez, 2011).
Netrin-1 also regulates growth cone motility through the regula-
tion of adhesion signaling (Li et al., 2004; Liu et al., 2004; Ren et
al., 2004). Interestingly, both BDNF and Netrin regulate growth
cone behavior by modulating Ca>" signaling via TRPC channels
(Lietal., 2005; Shim et al., 2005; Wang and Poo, 2005). However,
this is counterintuitive, since we recently showed that Ca*" in-
flux through TRPCI1-containing channels activates calpain (Ker-
stein et al., 2013). One explanation for this discrepancy may be
cyclic nucleotide signaling, which is known to act in parallel with
Ca** signals. Previous studies have shown that cAMP can actas a
molecular switch between Ca*" effectors CaMKII and calcineu-
rin to control attractive and repulsive turning, respectively (Song
etal., 1998; Wen et al., 2004). In addition, cAAMP/protein kinase A
can directly inhibit calpain function by phosphorylation at S369
(Shiraha et al., 2002). Therefore, while Ca" activates all of these
signaling pathways, differential signals may arise through cyclic
nucleotide-dependent regulation of the Ca*™ effectors calcineu-
rin, CaMKII, and calpain.

In addition to chemical guidance cues, mechanical cues may
also regulate axon outgrowth and guidance by Ca*" and calpain
signaling. Recently, we hypothesized that Ca®" signals may pro-
vide homeostatic feedback to point contact adhesions (Kerstein
etal., 2015). For example, filopodial Ca>™ transients and mecha-
nosensitive channels are modulated by ECM substratum rigidity
and regulate axon outgrowth and guidance through Ca**-
dependent activation of calpain (Kerstein et al., 2013). Further-
more, we demonstrated that filopodial Ca®" transients inhibit
point contact adhesion dynamics via calpain-mediated proteoly-
sis of talin and FAK (Figs. 4, 5, 6). These new data suggest a
mechanical inhibitory feedback mechanism among integrin,
Ca*", calpain, and point contact adhesion proteins. This mech-
anism in growth cones may also affect axon extension and guid-
ance in vivo, because RB peripheral axon outgrowth is strongly
modulated by perturbations to calpain proteolysis of adhesion
proteins (Fig. 7). Our model suggests that Ca®" and calpain in-
hibit normal adhesion dynamics to regulate axon outgrowth and
repulsive turning (Fig. 8). However, while our model fits the
experimental conditions presented in this study, it is likely that
the functional relevance of this mechanism varies depending on
the environmental conditions in vitro and in vivo.
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