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The evolutionary expansion of the mammalian brain, notably the neocortex, pro-
vides a platform for the higher cognitive abilities that characterize humans. Cor-
tical expansion is accompanied by increased folding of the pial surface, which
gives rise to a gyrencephalic (folded) rather than lissencephalic (unfolded) neo-
cortex. This expansion reflects the prolonged and increased proliferation of neu-
ral stem and progenitor cells (NPCs). Distinct classes of NPCs can be
distinguished based on either cell biological criteria (apical progenitors [APs],
basal progenitors [BPs]) or lineage (primary progenitors and secondary progeni-
tors). Cortical expansion in development and evolution is linked to an increased
abundance and proliferative capacity of BPs, notably basal radial glial cells, a
recently characterized type of secondary progenitor derived from apical radial
glial cells, the primary progenitors. To gain insight into the molecular basis
underlying the prolonged and increased proliferation of NPCs and in particular
BPs, comparative genomic and transcriptomic approaches, mostly for human
versus mouse, have been employed and applied to specific NPC types and sub-
populations. These have revealed two principal sets of molecular changes. One
concerns differences in the expression of common genes between species with
different degrees of cortical expansion. The other comprises human-specific
genes or genomic regulatory sequences. Various systems that allow functional
testing of these genomic and gene expression differences between species have
emerged, including transient and stable transgenesis, genome editing, cerebral
organoids, and organotypic slice cultures. These provide future avenues for
uncovering the molecular basis of cortical expansion. © 2016 Wiley Periodicals, Inc.
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INTRODUCTION

The brain is the most complex organ in our body.
With regard to the diversity of cell types, the

cytoarchitecture and neural circuitry, this complexity
is greatest in the neocortex, the seat of higher cogni-
tive functions. Although certain fundamental aspects

of neocortex structure are conserved among the vari-
ous mammalian species, there are tremendous differ-
ences with regard to neocortex size and morphology,
notably the absence or presence of folding (Figure 1).
For example, the most popular experimental animals
for studying the brain, that is, mouse and rat, have a
smooth (lissencephalic) and, compared to us, rela-
tively small neocortex. In contrast, many primates,
including human, have a folded (gyrencephalic) neo-
cortex exhibiting gyri and sulci, which is expanded in
size compared to the rodent brain. Because of these
features, many researchers are fascinated by a
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fundamental question in neuroscience: how does the
neocortex expand in development and evolution?

Development of the neocortex has mostly been
studied in rodent animal model systems, that is,
mouse and rat. All neurons and macroglial cells of
the neocortex originate, in the vast majority of cases
indirectly, from neuroepithelial cells (NECs). These
cells initially form a pseudostratified epithelium and
exhibit apical-basal polarity (Figure 2(a)). The apical
surface of the neuroepithelium faces the lumen of the
lateral ventricles, and the basal side with its basal
lamina constitutes the pial surface.1,2

With the onset of cortical neurogenesis, NECs
transform into radial glial cells (RGCs), and addi-
tional cell types, that is, secondary neural progenitor
cells (NPCs) and neurons, are generated. Neurons
and most of the secondary NPCs translocate their cell
bodies to a location basal to the apical-most germinal
zone harboring the RGC bodies, called the ventricu-
lar zone (VZ) (Figures 2(b)–(d) and 3). Concomitant
with the basal translocation of secondary NPCs and
neurons, RGCs elongate and maintain, like their
NEC precursors, contact with the basal lamina by

developing a basal (radial) process (Figure 2). RGCs
are thus highly related to NECs, exhibiting pro-
nounced apical-basal polarity.1,2

This unique cell type was first described at the
end of the 19th century and the beginning of the
20th century (reviewed in Ref 3), and its name ‘radial
glial cell’ was introduced by Pasko Rakic in the early
1970s.4 RGCs were initially thought to be a scaffold
for neuronal migration4 and then give rise to
astrocytes.5–8 These functions are true, but an addi-
tional, fundamental role of RGCs has recently been
uncovered—they act as NPCs. Although the possibil-
ity of such a role was raised already in the late
1980s,9,10 firm evidence for RGCs being NPCs has
only been available since the early 2000s,11–14 being
provided independently by four different groups of
researchers.

The first line of evidence, obtained in cell cul-
ture experiments, was provided by Götz et al.11

These researchers used transgenic mice that express
GFP under the human GFAP promoter to selectively
label radial glia cells, and found that GFP-positive
cells isolated from embryonic mouse neocortex
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FIGURE 1 | Lissencephalic mouse and gyrencephalic human neocortex. Cartoons of mouse (left) and human (right) brain (top) and of a
coronal section (bottom). Blue area indicates the gray matter.
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generated neurons in culture. The first evidence with
intact embryonic neocortex tissue was subsequently
reported by Kriegstein et al. and Miyata et al., who
observed, by time-lapse imaging, the generation of
neurons from retrovirus-infected GFP-expressing12 or
from DiI-labeled13 RGCs in organotypic slice culture.
Importantly, the study by Kriegstein et al.,12 and
independently that by Tamamaki et al. who used
adenovirus to express GFP in RGCs,14 provided
in vivo evidence that the progeny of RGCs includes
neurons. Despite the known close relationship of
RGCs to NECs,1,2 these studies were perceived as
somewhat like a paradigm shift, and were followed

by a significant increase in studies on cortical NPCs
that has continued until today.

A major conceptual change occurred with the
identification of basal progenitors (BPs) as the major
producers of cortical neurons and the characteriza-
tion of BP subtypes. Again, several research groups
independently contributed these findings, in two
main steps. First, using essentially the same
approaches as in the time-lapse imaging analyses of
RGCs,15,16 or by generating the Tis21::GFP knock-in
mouse line which specifically reveals NPCs commit-
ted to the neurogenic lineage,17 a novel class of NPC
was identified and characterized in embryonic mouse
and rat neocortex. These NPCs characteristically
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FIGURE 2 | Principal zones and progenitor cell types of developing neocortex. (a) Neuroepithelial cells (red). Arrows indicate the nuclear
migration during the cell cycle. (b) Cell types after the onset of neurogenesis. Primary progenitor cells (apical radial glial cell, aRGC), secondary
progenitor cells (apical intermediate progenitor, aIP; basal radial glial cells, bRGs; neurogenic and proliferative basal intermediate progenitor cells,
nbIP and pbIP) and postmitotic neurons are indicated in red, green and blue, respectively. (c) Major lineages from primary progenitor cells via
secondary progenitor cells to neurons (see (b)) in a lissencephalic rodent. Orange band indicates the SVZ. (d) Major lineages from primary
progenitor cells via secondary progenitor cells to neurons (see b) in a gyrencephalic primate. Orange bands indicate the oSVZ and iSVZ. SP,
subplate.
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undergo mitosis in a secondary germinal zone located
basal to the VZ called the subventricular zone (SVZ),
hence the name BPs. The BP type initially character-
ized in mouse and rat typically undergoes only one
cell cycle, lacks apical-basal polarity at mitosis,18 and
divides to generate two neurons, that is, it functions
as an intermediate progenitor cell.15–17,19 In addition,
the NPC lineages from RGCs to neurons have
recently been determined by an elegant clonal analy-
sis approach in mouse embryos in vivo.20

Extending the analyses of NPCs in embryonic/
fetal neocortex from lissencephalic rodents to gyren-
cephalic species,21–23 that is, primates (notably
human) and ferret, led to the identification and initial
characterization of a second principal type of BP
that, in contrast to intermediate progenitors, retains
certain RGC features.24–26 This BP type, in particu-
lar, has been implicated in the increase in neuron
number and the expansion of the neocortex in devel-
opment and evolution. Moreover, during the past
few years, an increasing complexity of BP subtypes
has become apparent.27 In this review, we summarize
the current knowledge about NPCs in the embryonic/
fetal neocortex of lissencephalic and gyrencephalic
mammals, and discuss their role in neocortex devel-
opment and evolution. As to the evolution of neuro-
genesis in the diverse metazoan nervous system,
including nonmammalian vertebrates, the reader is
referred to a comprehensive recent review28 and a
recent original paper.29

CYTOARCHITECTURE OF
DEVELOPING NEOCORTEX

The basic principles of the cytoarchitecture of the
developing neocortex in lissencephalic rodents and
gyrencephalic primates or ferret are similar. In all
mammals, a pseudostratified neuroepithelium
(Figure 2(a)) is formed after neural tube closure.
NECs then produce the first-born neurons, and thus
a preplate and a VZ emerge.21,30 Subsequently, with
the appearance of the cortical plate (CP), the preplate
is split into a marginal zone and a subplate. At the
same time, a SVZ arises basal to the VZ. In
between the CP and SVZ, an intermediate zone
(IZ) develops30 (Figure 2(c) and (d)).

A major difference between the lissencephalic
rodent and gyrencephalic primate or ferret neocortex
concerns the SVZ. Although the thickness of the VZ
is not massively different between rodents and pri-
mates, the primate SVZ is substantially thicker than
that of rodents and split into an outer SVZ (oSVZ)
and an inner SVZ (iSVZ)21 (Figure 2(c) and (d)). The

thickness of the oSVZ increases massively during the
neurogenic period, whereas that of the iSVZ does not
change that much. Therefore, the oSVZ, in particu-
lar, has been implicated in the expansion of the neo-
cortex in primates.21–23,31–34

PROGENITOR CELL CLASSES, TYPES,
AND MODES OF DIVISION

NPCs in the embryonic/fetal neocortex fall into two
major classes (Figure 3) that can be distinguished by
cell biological features, notably cell polarity32 (see
also a recent discussion about NPC nomenclature35).
NPCs that have apical junctions and thus are inserted
into the apical junctional belt and that undergo mito-
sis at the apical surface are referred to as apical pro-
genitors (APs).32 The other class of NPCs undergoes
mitosis at a nonapical, that is, basal location and are
delaminated from the apical junctional belt. These
NPCs are referred to as BPs.

Another NPC classification is based on cell line-
age (Figure 3). Primary NPCs divide to produce
(1) primary NPCs (self-renewal), (2) secondary
NPCs, and/or (3) neurons. During this process, they
undergo symmetric or asymmetric cell division. Sec-
ondary NPCs produce secondary NPCs and/or neu-
rons, undergoing symmetric or asymmetric divisions.
Prior to neurogenesis, there is only one type of pri-
mary NPC, the NECs, which belong to the APs. With
the onset of neurogenesis, the primary NPC type are
the aRGCs (which are also APs), and the secondary
NPCs comprise both APs, that is, apical intermediate
progenitor cells (aIPs), and BPs, that is, basal RGCs
(bRGCs) (for their origin in the developing ferret
neocortex, see Ref 36) and basal intermediate pro-
genitors (bIPs). Implicit in this classification is that
there are no basal primary NPCs. Although bRGCs
share some morphological features and marker
expression with aRGCs, a recent study showed that
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FIGURE 3 | Classification of neural progenitor cells in the
developing neocortex (For details, see text).
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bRGC morphology is more variable than originally
assumed and that there are transitions between
bRGCs and bIPs.27,37 In this section, we review key
features of the various types of APs and BPs as well
as primary and secondary NPCs.

Apical Progenitors

Neuroepithelial Cells
The initial APs and primary NPCs of the early
embryonic brain, the NECs (reviewed in Refs 1,2),
constitute a monolayer that forms a pseudostratified
epithelium. As already briefly mentioned above,
NECs exhibit overt apico-basal polarity, with an api-
cal surface, apical junctions and contact with the
basal lamina. Initially, NECs undergo symmetric
division to expand their number. Subsequently, they
switch to asymmetric division and generate a self-
renewed NEC or aRGC and a preplate neuron or BP.

During the cell cycle, NECs exhibit a character-
istic movement of their nucleus called interkinetic
nuclear migration (INM) (reviewed in Refs 38,39)
(Figure 2(a)). During G1, NEC nuclei migrate from
the apical (ventricular) surface toward the basal side,
where they undergo S phase. During G2, the nuclei
return to the apical side where they undergo mitosis.
The nuclei of the daughter cells arising from NEC
division, irrespective of cell type, migrate again to the
basal side. INM is responsible for the pseudostratifi-
cation of the neuroepithelium. Interestingly, when
NECs are experimentally manipulated to lose basal
lamina contact and to retract their basally directed
process, they no longer undergo proper INM.40

Instead, they remain at the apical side during all
phases of the cell cycle, and thus the apical cell den-
sity is increased. As a consequence, there is not
enough space for cell division apically, and the NPCs
delaminate from the apical surface. These results
nicely support the notion23 that INM ensures that
there is sufficient space at the apical side for mitosis.
Both actomyosin- and microtubule-dependent
mechanisms are known to be involved in INM
(reviewed in Ref 41).

Apical Radial Glial Cells
Concomitant with NECs starting to generate preplate
neurons, they begin to transform into aRGCs. aRGCs
share key features with NECs such as apical-basal
polarity (apical plasma membrane, apical junctions and
basal lamina contact), INM and PAX642, and nestin9

expression.2 However, there are also notable differences
between NECs and aRGCs. One is the expression of
astroglial markers in aRGCs, including brain lipid-

binding protein (BLBP),43,44 glutamate aspartate trans-
porter (GLAST),45 vimentin,46 tenascin-C47 and glial
fibrillary acidic protein (GFAP)6 (not in rodent48,49).
Even though the significance of the expression of these
proteins in aRGCs but not NECs is not fully under-
stood, these proteins serve as useful markers for aRGCs.

Another notable difference between NECs and
aRGCs is the presence, in the latter cells, of a basal
process that traverses the layers basal to the VZ
(SVZ, IZ, CP). Of note, the aRGC nucleus and the
Golgi apparatus are excluded from this basal proc-
ess.50 In considering these differences between NECs
and aRGCs, it should be noted that the appearance
of aRGC-specific features is a gradual process, and
that it is not always possible to firmly determine
whether a given single cell is still a NEC or already
an aRGC.

Finally, NECs and aRGCs are also thought to
differ with regard to the mode of cell division and
the type of daughter cells produced. Thus, at the
onset of neurogenesis, NECs switch to asymmetric
division which generate a self-renewing aRGC and
either a post-mitotic neuron or a BP.2 In contrast,
aRGCs in the course of neurogenesis undergo, to a
variable extent depending on the species, asymmet-
ric self-renewing as well as asymmetric or symmet-
ric consumptive divisions, with the non-aRGC
daughter cell(s) being more frequently a BP than a
neuron.

Apical Intermediate Progenitors
Apical intermediate progenitors (aIPs), previously
known as short neural precursors, constitute an AP-
type of aRGC progeny.51,52 aIPs show INM, undergo
mitosis at the apical surface and possess apical
plasma membrane and apical junctions. However,
the aIP basal process does not reach the basal lam-
ina.51 aIPs express PAX6 but not astroglial markers
such as BLBP and GLAST, and lack t-box brain pro-
tein 2 (TBR2) expression.52 In line with their nature
as intermediate progenitors, most aIPs divide sym-
metrically and generate two neuronal daughter
cells.52,53

Basal Progenitors

Basal Intermediate Progenitors
bIPs typically reside in the SVZ where they undergo
mitosis.15–17 These NPCs are no longer integrated
into the apical junctional belt but have delaminated
from ventricular surface. Also, as they lack an overt
basal process, bIPs lack apical-basal polarity alto-
gether. Based on differences in their proliferative
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capacity, two subtypes of bIPs can be distinguished.
One has high proliferative capacity and is referred to
as proliferative bIP (pbIP, previously also considered
to be the archetype of a transient amplifying progeni-
tor cell). pbIPs amplify in number by symmetric cell
divisions. The other bIP subtype, called neurogenic
bIP (nbIP), is less proliferative and undergoes sym-
metric division to generate two neurons. nbIPs are
thought to contribute most cortical neurons in
rodents15–17,19 (reviewed in Ref 54). In rodents, most
of bIPs express TBR2 and NEUROG2, but not
PAX6.55,56 In contrast, bIPs in developing gyrence-
phalic neocortex may sustain PAX6 expression, in
line with their increased proliferative capacity.27,57 In
species in which an iSVZ and an oSVZ can be distin-
duished, TBR2+ bIPs are found in both of these ger-
minal zones.58

Basal Radial Glial Cells
bRGCs were originally characterized in the develop-
ing gyrencephalic neocortex, notably human and
ferret,24–26 and later also in rodents.59,60 bRGCs61

are also called outer radial glia24 or translocating
RGC58 and have previously also been referred to as
intermediate radial glia cell26 (IRGC). bRGCs share
certain morphological features with aRGCs. Specifi-
cally, most bRGCs characteristically extend a basal
process toward the basal lamina and thus possess
clear cell polarity. However, bRGCs do not contact
the ventricular surface and lack proper apical cell
polarity.24–27

In terms of marker expression, bRGCs are
highly related to aRGCs24–26, expressing PAX6 and
astroglial markers (notably GFAP in primates). In
addition, given that a defining feature of bRGCs is
the presence of a radial fiber at mitosis, a useful tool
to identify bRGCs is immunostaining for phosphory-
lated vimentin.25,26 This is so because vimentin is
phosphorylated at S55 by CDK1 at prometaphase,62

and phosphorylated vimentin is found in the radial
fiber. Another commonly used marker of rodent
bIPs, TBR2, is also expressed in a fraction of primate
bRGCs.24,25,27 Moreover, this marker has revealed
differences between mouse and human bRGCs. Spe-
cifically, a greater proportion of mouse than human
bRGCs express TBR2 protein.25,37 Consistent with
this difference, a recent transcriptome analysis of
human and mouse cortical NPCs showed that human
aRGCs and bRGCs exhibit more similar gene expres-
sion patterns than mouse aRGCs and bRGCs, with
mouse bRGCs being more similar to neurons and
bIPs.37

A recent study27 has shown that the morphol-
ogy of bRGCs in the primate oSVZ is more diverse
than originally assumed. Thus, in addition to the
‘classical’ bRGC that is characterized by a basal proc-
ess at mitosis, bRGCs with a basal and an apical
process (also referred to as bipolar RG63) and bRGCs
with only an apical process at mitosis were also
observed.27 Moreover, the lineage relationships of the
various subtypes of bRGCs and bIPs as revealed by
live imaging in primate organotypic slice culture have
been shown to be diverse.27 Specifically, all these BP

Direct neurogenesis Indirect neurogenesis

Rodent (lissencephalic) Primate (gyrencephalic)

aRGC aRGC aRGC

aRGC aRGC aRGC bRGC, pbIP

bRGC, bIP

bRGC,
bIP

N

N N

N N N

nbIP

bRGC, bIP

FIGURE 4 | Selected examples of canonical neural progenitor cell lineages to neurons in developing neocortex. Left: direct neurogenesis by
asymmetric division of an aRGC. Middle and right: indirect neurogenesis. Middle: in a lissencephalic rodent, an aRGC undergoes asymmetric
division to yield an nbIP, which undergoes symmetric consumptive division to yield two neurons (N). Right: in a gyrencephalic primate, an aRGC
undergoes asymmetric division to yield a bRGC or pbIP, which undergoes symmetric proliferative division to yield two BPs, bRGCs or bIPs. These
then undergo either asymmetric or symmetric division to yield neurons.
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subtypes have the potential to generate neurons, and
each of them can convert into virtually any of the
other subtypes.27 These crucial observations called
for a revision, at least for primates, of the concept in
which the major lineage of neurogenesis was thought
to be bRG!bIP!neuron.

In addition to these morphological aspects, the
expression of molecular markers in bRGCs versus
bIPs is less distinct in primates than in rodents. Thus,
in the primate oSVZ, the vast majority not only of
bRGCs but also of bIPs express PAX6 protein. Con-
versely, not only most bIPs, but also a significant
proportion of bRGCs express TBR2, that is, together
with PAX6.25,27

During M-phase, bRGCs show a characteristic
nuclear movement called mitotic somal translocation
(MST).24 The cell soma rapidly moves in the basa-
l24or apical27 direction just before cytokinesis.
Basally directed MST requires non-muscle myosin II,
similar to the basally directed INM of aRGCs and
the basally directed nuclear migration during BP
delamination,64 and involves the RhoA–Rho-kinase
pathway.65 The biological significance of MST is not
yet fully understood. A possible, intriguing role is its
involvement in the radial expansion of OSVZ.66

INCREASING NEURON PRODUCTION–

FROM DIRECT TO INDIRECT
NEUROGENESIS

The various NPC lineages underlying neurogenesis
crucially determine the number of cortical neurons
produced. In rodents, two principal ways of generat-
ing neurons in the neocortex have been described,
referred to as direct and indirect neurogenesis
(Figure 4) (reviewed in Refs 34,54). A typical exam-
ple of direct neurogenesis has been observed at the
onset of neurogenesis, when a NEC (or aRG) under-
goes asymmetric cell division to produce an aRG and
a neuron. Direct neurogenesis therefore generates
only one neuron per AP mitosis, which is sufficient
for neurogenesis in, for example, the spinal cord or
for the generation of preplate neurons in the neocor-
tex. However, direct neurogenesis is not sufficient to
generate the bulk of the neurons in the rodent neo-
cortex, which is achieved via indirect neurogene-
sis.18,54,67 Here, an aRG undergoes asymmetric cell
division to self-renew and to produce a secondary
NPC, which typically is an nbIP that divides in a self-
consuming manner to generate two neurons.15–17

To produce the massively increased number of
neurons in the primate neocortex, which (as is the
case for human) can be up to >1000-fold greater

than in mouse,67–69 indirect neurogenesis has evolved
to comprise diverse lineages of cortical NPCs that
ultimately result in neuron output. Importantly, these
lineages include those involving symmetric prolifera-
tive divisions of BPs (both bRGCs and pbIPs).

Direct versus indirect neurogenesis and the vari-
ous lineages of the latter have interesting implications
for the cell polarity of newly generated neurons,
which after maturation exhibit axon-dendrite polar-
ity.70 In the case of direct neurogenesis, the newborn
neuron can inherit apical and/or basal polarity from
the NEC/aRGC mother cell, which may provide cues
for the subsequent development of neuronal polar-
ity.13 By analogy, neurons produced by indirect neu-
rogenesis from bRGCs may inherit certain polarity
cues, depending on the morphotype of the mother
bRGC. In contrast, neurons produced by indirect
neurogenesis from nbIPs, which lack apical-basal
polarity,18 do not inherit cell polarity cues and thus
develop neuronal polarity de novo15,71 (Figure 2
(c) and (d)).

EVOLUTION OF THE NEOCORTEX –

EXPANSION OF BASAL PROGENITORS

When comparing a typical rodent brain such as
mouse or rat and a human brain macroscopically,
striking differences in two major parameters are
immediately apparent—cerebral cortex size and the
degree of cerebral cortex folding (i.e., lissencephalic
versus gyrencephalic). Thus, the human cerebral cor-
tex is more than 7000 times larger than that of the
mouse67,69 and contains more than 1000 times the
number of neurons of the mouse cerebral cortex.67,69

Before addressing the issue of how the developing
human cerebral cortex generates such a large number
of neurons, we would like to briefly comment on the
topic of areal complexity of the neocortex.72,73

In addition to the macroscopical differences
(cerebral cortex size and the degree of cerebral cortex
folding), there is another significant difference
between a rodent brain and the human brain—the
number of functional cortical areas. Brodmann
divided the human neocortex into 47 areas based on
their cytoarchitecture.74 Also in the neocortex of
some rodents, a similar number of cytoarchitecturally
distinct areas can be distinguished.75 However, the
number of functional areas is massively increased in
primates, especially in great apes and human. For
example, there are no areas in rodents equivalent to
the language-related areas of Broca and Wernicke.76

Moreover, different cell cycle kinetics of NPCs have
been shown to underlie the distinct cytoarchitecture
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of different cortical areas.22,77–79 In addition, the
gene expression patterns are different between pro-
spective gyri and sulci (see below). These results sug-
gest that regional specification is already established
at the developmental stage, in line the cortical proto-
map concept.72,80

How, then, does the developing human cerebral
cortex generate such a large number of neurons?
There are two parameters that, as a matter of princi-
ple, determine the number of neurons generated dur-
ing cortical development. First, the length of the
neurogenic period, at least for species that use essen-
tially the same neurogenic program (i.e., similar
progenitor-to-neuron lineages, similar progenitor cell
cycle length). Second, the number of neuron-
generating divisions of cortical NPCs per unit time
and their mode of division. Regarding the second
parameter, the pool size of neurogenic NPCs is a
major determinant of the number of neuron-
generating divisions. This pool size, in turn, reflects
the overall pool size of all NPCs and their various
modes of cell division, as is discussed below.

A recent study suggests that the length of the
neurogenic period may be sufficient to explain the
increase in cortical neuron number during evolu-
tion.67 In this study, mammals were found to fall into
two main groups with regard to the degree of cere-
bral cortex folding: those with a gyrencephaly index
(GI) of >1.5 (high GI group) and those with a GI of
≤1.5 (low GI group). The high GI group contains
many monkey and all ape and cetacean species,
whereas the low GI group includes all rodents and
marsupials. Mathematical modeling showed that, for
either the low GI or the high GI group, an increase in
the length of the neurogenic period alone can explain
the increase in neuron number across species in the
respective group. Of note, the conclusion drawn from
this modeling is consistent with the results of two
experimental studies. One study has proposed that
the longer neurogenic period in primates allows for a
substantially greater number of rounds of cell divi-
sions as compared to rodents.81 The other study has
shown that prolongation of the neurogenic phase of
NPCs by inactivation of the polycomb group com-
plex in embryonic mouse neocortex resulted in an
increase in upper-layer neurons and the radial thick-
ness of the upper cortical layers,82 two hallmarks of
the evolutionary expansion of the neocortex.

The pool size of neurogenic NPCs is largely
determined by two parameters. One is the number of
NECs at the onset of neurogenesis. As estimated in a
previous study,67 this number in human is almost
100 times larger than in the mouse. However, this
difference in NEC number alone does not suffice to

explain the 1000-fold greater number of neurons in
the human neocortex as compared to mouse. An
additional, second parameter is required to achieve
the neuron number in human, which concerns the
lineages from NECs to neurogenic NPCs. Specifically,
human and other primates increase the neurogenic
NPC pool size by using lineages that involve symmet-
ric proliferative divisions of BPs.27,31,67 Of note,
mathematical modeling has shown that if the mouse
were to adopt such human-type combination of
lineages, this would be more efficient for generating
large number of neurons than increasing NEC num-
ber or lengthening the neurogenic period.67

The use of symmetric proliferative divisions of
BPs reflects the intrinsic advantage that BPs offer
over APs to expand the NPC pool. Because of the
space limitation for mitosis at the apical surface of
the cortical wall, the expansion of the NPC pool
occurs in the SVZ rather than that in the VZ40 and
hence rests upon BP proliferation. As described
above, at least three BP subtypes with regard to the
progeny produced can be distinguished: bRGCs
pbIPs, and nbIPs. Of these, pbIPs and bRGCs have
proliferative capacity that results not only in their
self-renewal but also in their expansion. Indeed, the
number of pbIPs and bRGCs have been found to be
massively increased in the gyrencephalic species stud-
ied so far in detail, notably the ferret and primates
such as macaque monkey and human.24–27

It should be noted, however, that an expansion
of BPs with proliferative capacity does not necessarily
result in gyrification. Experimental manipulation of
specific genes that regulate BP proliferation has been
found to induce gyrification of the mouse neocortex
in some,37,83 but not all,84 cases. A possible, if not
probable, explanation may be that BP expansion will
only result in gyrification if bRGCs and not only
pbIPs are increased.85 Consistent with this interpreta-
tion, increasing BP proliferation by overexpression of
cell cycle regulators in mouse neocortex neither
increased bRGC abundance nor resulted in cortical
folding,84 whereas a human-like downregulation of
TRNP183 or overexpression of human-specific
ARHGAP11B,37 discussed in more detail below,
achieved both effects. Furthermore, increasing BP
proliferation by overexpression of cell cycle regula-
tors in developing ferret neocortex, which in contrast
to mouse contains bRGC at relatively high abun-
dance, did induce extra cortical folding.84

In this context, it is interesting to note that
NPCs exhibiting bRGC-like morphology and marker
expression have been observed in the developing den-
tate gyrus not only of nonhuman primates86 but also
of rodents.87–91 Given that the dentate gyrus belongs
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to the archicortex, and in light of the fact that the
phylogenetic branches leading to the ferret and sheep,
in which bRGCs constitute a substantial proportion
of BPs,25,26,63 separated from the phylogenetic
branches leading to monkeys, apes and human about
100 million years ago, it appears that bRGCs may
well be an ancestral type of NPC. Consistent with
this notion, a recent study has shown the presence of
NPCs with bRGC-like morphology in the developing
pallium of nonmammalian vertebrates such as
birds.29 Together, these findings raise the possibility
that for neocortical expansion to occur, the crucial
parameter may not be the absence or presence of
bRGCs as such, but their abundance.26

KEY GENES FOR BP EXPANSION

Several recent studies have identified key genes respon-
sible for BP expansion, by focusing on differences
between primate and rodent BPs as revealed
by genomics and transcriptomics. Thus, transcriptomic
studies have identified genes differentially expressed
between mouse and human NPCs or germinal
zones.37,92–94 Here, we concentrate on two such stud-
ies, which also comprise in-depth functional analyses
of the respective genes in neocortical development.

The first study to be discussed concerns
platelet-derived growth factor (PDGF) signaling.
Comparative transcriptomics of proliferative aRGCs
and nbIPs from mouse embryonic neocortex had
pointed to a potential role of PDGF signaling in NPC
proliferation.95 Indeed, a recent study has provided
compelling evidence for a role of human PDGFD and
PDGF receptor β (PDGFRβ).92,93 Specifically, in the
fetal human neocortex, PDGFD and PDGFRB are
prominently expressed in the VZ and SVZ.92,93

PDGF was originally identified as a mitogen for
fibroblasts and smooth muscle cells (reviewed in Ref
96) and shown to be also involved in tumor growth
and metastasis (reviewed in Ref 97). PDGFD is the
most recently identified PDGF family member.98,99

PDGFD binds to the homodimer of PDGFRβ or the
heterodimer of PDGFRα/β and activates several
downstream signaling pathways (reviewed in Ref
97). In organotypic slice culture of fetal human neo-
cortex, inhibition of PDGFRβ by chemical inhibitors
decreased the proliferation of SOX2-positive aRGCs
and bRGCs and of TBR2-positive BPs.93 Conversely,
ectopic expression of a constitutively active form of
PDGFRβ in mouse embryonic neocortex induced
NPC proliferation and an increased appearance of
SOX2-positive bRGCs. It remains to be established
whether the latter reflected an increased proliferation

of bRGCs or an increased delamination of aRGCs.
Interestingly, a previous study showed that PDGFD
promotes the epithelial-mesenchymal transition
(EMT) of cancer cells.100 Because the generation of
BPs, notably their delamination, shares certain fea-
tures with EMT,101 the role of PDGFD-PDGFRβ sig-
naling in BP generation and amplification in
developing human neocortex may well involve EMT-
related processes.

The second study to be discussed examined dif-
ferentially expressed genes in the various cell types
isolated from human and mouse developing neocor-
tex.37 One gene was found to be highly expressed in
fetal human aRGCs and bRGCs but not human neu-
rons, nor in any cell type of embryonic mouse neo-
cortex (Figure 5). This gene, ARHGAP11B, is
human-specific and arose from a partial gene dupli-
cation of the ubiquitous gene ARHGAP11A.102

ARHGAP11B is not present in the chimpanzee
genome but found in the Neanderthal and Denisovan
genomes, consistent with the partial gene duplication
having occurred just after the divergence of the
human lineage from the chimpanzee lineage.102–105

Ectopic expression of ARHGAP11B in embryonic
mouse neocortex increased the number of prolifera-
tive BPs and was able to induce gyrification of the
neocortex.37 The molecular function of ARH-
GAP11B is still unclear. Being a Rho GTPase activat-
ing protein (GAP), ARHGAP11A has been
implicated in the regulation of cell proliferation
through its effects on RhoA activity106–108 (Figure 5).
ARHGAP11B has virtually the same amino acid
sequence as ARHGAP11A until residue 220, with
this N-terminal region comprising most, but not all,

RhoA-GTP

RhoA-GTP New functions?

RhoA GAP activity

No RhoA GAP activity

ARHGAP11A

ARHGAP11B

1

1

46 246

220 267 aa
unique sequence

GAP
1023 aa

FIGURE 5 | ARHGAP11B. Cartoon showing key differences
between ARHGAP11A and ARHGAP11B. ARHGAP11A contains a
complete RhoGAP domain (magenta) and exhibits RhoGAP activity
toward RhoA. In contrast, ARHGAP11B, due to a frame shift-causing
mutation, lacks the C-terminal 26 amino acids of the RhoGAP domain,
does not exhibit RhoA-GAP activity, and contains a unique, human-
specific 47 amino acid-sequence (green) following residue 220.
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of the GAP domain. However, because of a frame
shift-causing mutation, ARHGAP11B lacks the C-
terminal 26 amino acids of the Rho GAP domain
and does not exhibit significant GAP activity toward
RhoA in vivo.37 Instead, ARHGAP11B contains a
unique, human-specific 47 amino acid-sequence fol-
lowing residue 220. In light of the presumptive role
of ARHGAP11B in the evolutionary expansion of
the human neocortex, a major challenge of future
research is to elucidate its molecular function and to
determine the role of the human-specific C-terminal
47 amino acid-sequence therein.

Changes in noncoding genomic regions are also
important for brain evolution.109,110 A recent study
has identified a novel human-accelerated regulatory
enhancer called HARE5.110 HARE5 is an enhancer of
the gene encoding the human Wnt receptor Frizzled
8 (FZD8). Compared with the chimpanzee’s corre-
sponding enhancer region, HARE5 has stronger
enhancer activity for FZD8. Thus, transgenic mice
expressing mouse Fzd8 under the human (i.e.,
HARE5) enhancer exhibit a shorter cell cycle of NPCs
and an increased number of BPs as compared to trans-
genic mice expressing Fzd8 under the chimpanzee
enhancer or wildtype mice. At a later stage of cortico-
genesis, HARE5-Fzd8 transgenic mice show enlarge-
ment of the neocortex and increased upper layer
neurons. These findings not only support the notion
of a role of Wnt signaling in brain size,111 but also
implicate HARE5 as an important regulatory element
in the evolutionary expansion of the human neocor-
tex. Moreover, the increase in BPs in the HARE5-
Fzd8 transgenic mice is consistent with two previous
lines of investigation. First, that mouse nbIPs downre-
gulate wnt signaling as compared to proliferative
aRGCs.95 Second, that Fzd8 is expressed in the mouse
VZ but barely in the mouse SVZ, whereas FZD8
expression is not only high in the human VZ but
sustained in the human iSVZ and oSVZ.92

Complementing the analyses dissecting differen-
tial gene expression between human and rodents, a
recent study of developing ferret neocortex has
screened for genes differentially expressed between
VZ and SVZ and between a prospective gyrus and
sulcus.112 This revealed several prospective gyrus-
enriched genes (Fgfr2, Fgfr3, Lhx2 and Eomes/Tbr2)
and prospective sulcus-enriched genes (Cdh8 and
Trnp1), that exhibited local differential expression
patterns also in developing human neocortex. In con-
trast to ferret and human, these genes showed either
a uniform expression or a simple rostral-caudal gra-
dient in embryonic mouse brain. These results indi-
cate the existence of ‘cortical protomap’ before
gyrification takes place. Of note, experimental

inhibition (expression of dominant-negative TBR2)
or activation (administration of the FGFR3 ligand
FGF8) of these prospective gyrus-enriched molecules
in the developing ferret neocortex resulted in reduced
or increased gyrification, respectively.113,114

Of note, a previous study has addressed the
role of TRNP1, a regulator of transcription, in mouse
cortical development.83 Overexpression of TRNP1
increased aRGCs and decreased BPs. In contrast,
knockdown of TRNP1 increased BPs, notably
bRGCs, and decreased aRGCs. Importantly, the
TRNP1 knockdown region showed gyrification. These
results suggest that differential TRNP1 expression
may have a key role in human neocortex folding.

CONCLUSION

The past one and a half decades have witnessed an
unsurpassed finesse in the dissection of the major
classes and various types of cortical NPCs, both in
terms of their cell biology and molecular signatures.
It has become clear that cortical expansion is linked
to an increase in the abundance and proliferative
capacity of BPs, notably bRGCs. By virtue of BPs
being delaminated from the ventricular surface, this
class of NPCs overcomes the constraint of under-
going apical mitosis at the rather limited space pro-
vided by the ventricular surface, as originally
proposed by Smart.115,116 Two principal parameters
have been identified as being crucial for cortical
expansion, that is, lengthening the neurogenic period
and increasing the efficacy of neuron output per unit
time. The latter is largely achieved by introducing
symmetric proliferative BP divisions into the various
lineages from the primary cortical progenitors, that
is, NECs and aRGCs, to cortical neurons. Impor-
tantly, although cortical expansion tends to be
accompanied by an increase in gyrification, these
two parameters are not correlated to each other in a
simple, linear manner. Thus, the human neocortex
has tripled in size compared to that of the chimpan-
zee, without a corresponding increase in the gyrifica-
tion index. In line with this consideration, not only
specific gene expression programs112 but also physi-
cal forces117 have been implicated in cortical
folding.

Comparative genomic and transcriptomic
approaches have led to the identification of human-
specific gene expression features, or genes or genomic
sequences, that underlie cortical expansion. The
former include Trnp1, PDGFD/PDGFRB, and
PAX6,118 the latter ARHGAP11B and HARE5. Sev-
eral technological advances will further our efforts to
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gain insight into the molecular basis underlying corti-
cal expansion. First, the establishment of 3D
in vitro systems derived from iPS cells (cerebral orga-
noids)119 will allow us to identify differences in NPC
behavior between the great apes and human,120,121

and to dissect NPC defects causing disorders of corti-
cal development such as microcephaly.122 Second,
complementing experimental data sets based on tran-
scriptomics, live imaging, histology and cell cycle
analyses with mathematical modeling is likely to con-
tribute further conceptual insight into the principles
underlying cortical expansion.24,37,57,67,92–94,123–125

Third, the ability to examine, with regard to their

functional effects on NPCs, not only a few selected
genes, but complex mixtures of them by microinjec-
tion into aRGCs in organotypic slice culture126,127

(despite the limitations inherent in such in vitro
approaches) should help us to overcome the limita-
tions that have been intrinsic to canonical appro-
chaes (e.g., transgenesis) in uncovering additive or
synergistic effects of multiple factors. Thus, a promis-
ing platform has been established to gain a compre-
hensive and integrative understanding of the
molecular basis that underlies the evolutionary
expansion of the human neocortex and that provides
a framework for our cognitive abilities.
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